
Programming and Modelling

Module 1 & 2

Introduction to Fortran Programming

C. Thieulot

September 2016

Institute of Earth Sciences
Utrecht University

1

2

Contents

1 Introduction 4

2 Requirements and course credit 5

2.1 Computer lab report (50% credit) . 5

2.2 Midterm written examination (50% credit) . 5

3 Template for all exercises 6

4 Fortran programming exercises (Module 1) 7

4.1 Introduction . 7

4.2 Tutorial exercises for the 1st week . 8

4.2.1 Hello World . 8

4.2.2 A 2×2 equation solver . 8

4.2.3 Tables of multiplication . 8

4.2.4 computepi . 9

4.2.5 Golden Ratio . 10

4.2.6 Computing and writing function tables to file 10

4.3 Tutorial exercises for the 2nd week . 11

4.3.1 Simple ballistics . 11

4.3.2 Fermat’s conjecture . 11

4.3.3 Prime numbers (1) . 11

4.3.4 Prime numbers (2) . 12

4.3.5 Extrema . 12

4.3.6 Easy as a,b,c . 12

4.3.7 P-norms . 12

4.3.8 Magic square . 12

5 Fortran programming exercises (Module 2) 13

5.1 myabsvalue function . 13

5.2 centergrav function . 13

5.3 swap subroutine . 13

5.4 circle subroutine . 13

5.5 Using allocatable arrays . 13

5.6 Two-dimensional tables of functions . 14

A A Fortran Tutorial 16

A.1 Introduction . 16

A.2 Installing and executing a Fortran program . 16

A.2.1 Input/output redirection . 17

A.3 Fortran source text formats . 17

A.4 Program variables . 18

A.4.1 Variables of type character . 19

A.5 Indexed variables . 19

A.6 Program Control Structures (constructs) . 19

A.6.1 Program loop statements . 19

A.6.2 Conditional Statements and logical expressions 21

A.7 Program Input/Output . 21

A.8 Procedures, subroutines and functions . 22

A.8.1 A subroutine for writing table data to a 2-column text file 23

3

B Supplementary Fortran programming exercises 25
B.1 Introduction . 25

B.1.1 Computation of arithmetic, geometric and harmonic mean values 25
B.1.2 Computation of the p-norm of a vector . 25
B.1.3 The bubble-sort procedure for sorting numbers 25
B.1.4 A function to determine the length of a 2-column data file 26
B.1.5 A function to read data from a 2-column data file 26
B.1.6 Printplot of a 2-column data table . 27
B.1.7 Removal of the mean value of a time series 27

C Some useful Linux commands 29

D Data visualisation with GNUPLOT 31
D.1 Basic 2D plots . 31
D.2 Surfaces and 3D plotting . 32

D.2.1 Example - a surface plot of disconnected symbols 32
D.2.2 Example - a color filled connected surface . 33
D.2.3 Example - a colored map view plot . 33
D.2.4 Example - contouring data . 34
D.2.5 Example - a map view contour plot . 35

4

1 Introduction

The course in ‘programming and modelling’ starts with a four weeks on basic computer program-
ming. The other half of the course (i.e. the remaining four weeks are given by other teachers).
These four weeks (36-39) comprise two 2-week modules which focus on program development and
applications using the Fortran programming language and consist of several instruction sessions and
computer lab sessions, for which a total of eights half days have been scheduled. The instruction
sessions introduce the programming tools and the computer lab experiments to be done by the
students. The experiments of the computer labs are done in the computer workstation rooms of
the Buys Ballot buildings, where assistance will be available, during the sessions scheduled for the
course.

Students work together in groups of two and each group produces a Lab report that has to be
submitted on the first monday after this module ends. The deadline for the first report is then
Monday 19th September 3pm. The deadline for the second report is then Monday 3rd October
3pm.

Concerning the course software: the course will be taught using the Linux operating system the
GNU Fortran compiler.

Useful references on Fortran programming are,

• M. Metcalf, J. Reid and M. Cohen, FORTRAN 95/2003 explained, Oxford University Press,
2008.

• S.J. Chapman, Fortran 90/95 for Scientists and Engineers, McGraw-Hill, 1998.

• http://www.dmoz.org/Computers/Programming/Languages/Fortran

• http://gcc.gnu.org/wiki/GFortran

• http://gcc.gnu.org/onlinedocs/gfortran

Links

• gnuplot tutorials:
http://www.gnuplot.info/

• xmgrace tutorials:
http://plasma-gate.weizmann.ac.il/Grace/doc/UsersGuide.html

http://mintaka.sdsu.edu/reu/grace.tutorial.html

http://exciting-code.org/xmgrace-quickstart

• An impressive and most useful website dedicated to programming and numerical modelling
http://people.sc.fsu.edu/~jburkardt/

• A page about Makefiles and much other useful things :
http://www.jfranken.de/homepages/johannes/vortraege/make.en.html

All enquiries about exams and special requests should be addressed to C. Thieulot (c.thieulot-
at-uu.nl).

5

2 Requirements and course credit

2.1 Computer lab report (50% credit)

At the end of each module, a single computerlab report is produced per group of two students.
Communication between different student teams is encouraged but (partial) copying work from
other teams will lead to exclusion from the course.

Submit your report as a pdf file per e-mail before the start of the next course module (see
deadlines hereabove). Make sure to include a title, list of authors and production date in your
report. Use page numbering. Your report should not exceed the length of 10 pages. I expect 1
report per pair of students.

Structure and contents of the computerlab report:

• The report should be structured in the following way. Each assigment from the course notes
should be treated in a separate numbered report section. The different sections contain: a)
brief statement of the problem to be solved, b) a short description of the actions taken to solve
the problem and c) a short description of your results.

• Include the unaltered source text of your (self created) fortran procedures at the end of the
corresponding sections (in a reduced size typewriter font as used in the lecture notes). Use
indentation and comment text in your fortran source texts to increase the readability. Source
texts copied from the lecture notes or the computer network should be referenced but not be
reproduced in your report.

• Integrate screen (text) output and graphics output in the main body of your report in the
relevant section. Do not add these items as separate appendices. Define the different screen
output texts as numbered tables and the graphics items as numbered figures and refer to these
table and figure numbers in the text.

• Your report must contain a short conclusion section where you summarize the main points of
what you have learned in this course module

2.2 Midterm written examination (50% credit)

At the end of the second course module a written exam, of one hour, is scheduled about the combined
contents of the first two (required) course modules. In this individual exam a simple programming
assignment has to be made from scratch i.e. without the use of computer equipment or reference
literature.

6

3 Template for all exercises

!==!

!

! student number(s):

!

! date:

!

! exercise number:

!

! description of the program:

!

!

!

! comments to corrector:

!

!

!==!

program

end program

!==!

Example of proper indentation:

do i=1,10

do j=1,100

do k=-2:2

...

array(i,j,k)=i+j-k

...

end do

end do

end do

7

4 Fortran programming exercises (Module 1)

4.1 Introduction

A tutorial overview of the main elements of the Fortran programming language is given in Appendix
A. To get acquainted with the basics of applying Fortran, study the examples in the Appendix and
work through the exercises in the following sections. Include a short description of each exercise,
together with the program source text and input plus output in your lab report for this course
module.

To get started with Fortran program development perform the exercises stated below. Use
input/output redirection such that you can save your input and output files for your lab report (see
Appendix A.2).

It is expected from every group that they carry out all exercises and include the code and results
in the final lab report (see section 2.2).

8

4.2 Tutorial exercises for the 1st week

4.2.1 Hello World

To test the different steps in the procedure of program development and excution write a rudimentary
fortran program hello_world (see Appendix A.2) that prints the text hello world in the terminal
window.

4.2.2 A 2×2 equation solver

Write a program which prompts for the values a, b, c, d, f, g and returns the solution x, y of the
following linear system:{

ax+ by = f
cx+ dy = g

1 Test the proper working of your program in the following way: 1) for a given test vector pair
x = x0, y = y0 compute the corresponding vector pair f = f0, g = g0 by matrix-vector multiplication
and 2) solve the system of equations with the pair f0, g0 as the righthand side vector and 3) compare
the computed solution vector with the pair x0, y0.

4.2.3 Tables of multiplication

In all Fortran program units, (program, subroutine, function) you must put an implicit none

declaration after the first line of source code. This will enforce explicit typing of all variables used
in the program unit and removes an important source of programming errors.

You will use Fortran arrays and do-loop constructs to fill arrays with tables of multiplication
(see A.6.1). Necessary input will be read from stdin and output will be written to stdout (see
A.2.1).

1. Write a Fortran program that can produce a single multiplication table. Use a one-dimensional
array table1, which must be declared as a fixed length (10) array in the declaration block of
your program.

Read the table number from stdin, denoted by ‘logical unit number’ 5, using ‘list directed’
input (free format input), denoted by the asterisk character ‘*’.

read(5,*) numtable

Fill the table in a do-loop,

do i=1, 10

...

end do

The table array can be written using a ‘list directed output’ statement,

1Use the Cramer formula for the inverse A−1 of a matrix A with,

A =

(
a b
c d

)
, A−1 =

1

det(A)

(
d −b
−c a

)
where det(A) = ad− bc is the determinant of matrix A.

9

write(6,*) (table1(i),i=1,10)

Use output redirection to write the table data to a text file table1.dat.

2. Compute multiplication tables for n = 1, ...,m in a two-dimensional array table2.

Use an array declaration with fixed array lengths in both dimensions and make sure to declare
sufficient array space. Fill the two-dimensional array table2 in a program control structure
(construct) with two nested do-loops, see Appendix A.6 for an example.

do i=1,m

do j=1, 10

...

end do

end do

Check what happens if the array has been declared with insufficient arraysize. Print the 2-D
table when it has been filled in a loop over table rows,

do i=1,m

write(6,*) (table2(i,j),j=1,10)

end do

Produce an output text file containing the 2-D table data.

4.2.4 computepi

One can show that the number π can be computed as follows:

π = 4
∞∑
n=0

(−1)n
1

2n+ 1

In practice∞ is a mathematical abstraction which computers cannot represent nor process. This
is why we shall use

π = 4
m∑

n=0

(−1)n
1

2n+ 1
with m >> 1

Write a Fortran program that evaluates the series expression and prints the computed (approxi-
mate) value of π. Compare the outcome of your calculation with the analytic value π = 4 ·arctan(1)
that can be computed within machine precision using the Fortran intrinsic function atan. 2

To investigate the effect of different number representations (single or double precision real
variables - see Apppendix A.4) do the following tests and comment on the differences in the outcome
for different parameters and declarations of the real variables:

• declare the variable pi r as a (single precision) real

• compute and print pi r by means of the above formula with m=103, 106, 109.

• declare now the variable pi dp as a double precision real

• compute and print pi dp by means of the above formula with m=103, 106, 109.

2http://gcc.gnu.org/onlinedocs/gfortran/ATAN.html

10

4.2.5 Golden Ratio

Write a program which computes the Golden ratio φ through the Fibonacci numbers:

u0 = 1 u1 = 1 . . . un+1 = un + un−1

where the ratio un+1/un converges towards φ.

Compare your outcome with the formula φ = 1+
√

5
2 and determine how many Fibonacci numbers

are necessary to get a correspondence in 5 decimals. 3

4.2.6 Computing and writing function tables to file

Compute a sine and cosine table for a single period and write the tables of xi, sin(xi) and xi, cos(xi), i =
1, . . . , n to separate two-column output files. Inspect the data in these files by plotting them in a
single frame using the graphics program gnuplot. Produce a single graph showing both curves. The
graph should include axis labelling and a legend to distinguish both curves. Export your completed
plot to a graphics output file in a suitable format. Include this plot in your lab report.

3http://en.wikipedia.org/wiki/Golden ratio

11

4.3 Tutorial exercises for the 2nd week

4.3.1 Simple ballistics

Consider a point mass launched vertically in a gravity field with given uniform gravitational acceller-
ation g and initial velocity v0 (Fig.1a). Write a Fortran program that will read the values of g and v0

from the standard input file. The program computes trajectory data of the point mass in separate
tables, stored as 1-D Fortran arrays, containing the vertical coordinate and its corresponding verti-
cal velocity. The table entries correspond to discrete time values, ti = (i− 1) ·∆t, i = 1, . . . , n, for
a fixed time step ∆t. The tables are filled in a Fortran do-loop over n relevant time values between
launch and impact. The time window covered in the computation should start with the launch and
end with the final impact when the point mass returns at the point of departure.

Use sufficient table points to be able to produce smooth plot curves of the vertical coordinate
and the velocity as functions of time in separate frames and label the axes of both graphs properly
(use gnuplot or xmgrace (appendix C)).

a) b)
Fig.1: a) canon from 1558; b) an extraordinary book I highly recommend

4.3.2 Fermat’s conjecture

In number theory, Fermat’s Last Theorem (sometimes called Fermat’s conjecture, 1637) states that
no three positive integers a, b, and c can satisfy the equation an + bn = cn for any integer value of
n greater than two.

The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995,
after 358 years of effort by mathematicians (Fig.1b). Verify the conjecture for 1 ≤ a, b, c ≤ 100 for
1 ≤ n ≤ 10.

You may wish to start by using brute force. In a second time, you may wish to have a look and
refine your algorithm.

4.3.3 Prime numbers (1)

Write a program which prompts the user for a number less than 999, and tests whether this number
is a prime number. Hint: in Fortran the expression mod(n,m) gives the remainder when n is divided
by m; it is meant to be applied to integers. Examples are mod(8,3)=2, mod(27,4)=3, mod(11,2)=1,
mod(20,5)=0.

12

4.3.4 Prime numbers (2)

A Mersenne (1588-1648) number is a number of the form Mn = 2n − 1. Are all Mn prime numbers
? Give the first four Mersenne numbers which are prime numbers.

4.3.5 Extrema

Declare an array tab of length 50 and fill it so that tab(i) = (i − 25)3 + i2 + i. By means of a do
loop find its minimum, maximum and average value.

4.3.6 Easy as a,b,c

Write a program which prompts the user for three numbers a, b, c and which returns the roots of
the polynomial equation ax2 + bx+ c = 0.

4.3.7 P-norms

The Euclidean norm of a vector a = (a1, a2, a3) in three dimensions is given by

|a|2 =
√
a2

1 + a2
2 + a2

3 or |a|2 = (a2
1 + a2

2 + a2
3)1/2

One can generalise this by defining the p-norm of an n−dimensional object u as follows:

|u|p = (|u1|p + |u2|p + |u3|p + |u4|p + ...|un|p)1/p =

(
n∑

i=1

|ui|p
)1/p

• create three arrays of size 567

• fill these arrays with three different methods of your choice (be creative :)

• write a program which computes the 1-norm, 2-norm, 3-norm and 100-norm of these arrays

4.3.8 Magic square

Create a two-dimensional array and fill it so that it contains the following numbers:

Verify that it is a magic square.

13

5 Fortran programming exercises (Module 2)

5.1 myabsvalue function

Write a function which returns -1 if its argument is negative and +1 if its argument is positive.
Think. Write a small program which tests this function.

5.2 centergrav function

Write a function which accepts as arguments the coordinates of 5 points and returns the coordinates
of the center of gravity of these points. Write a small program which tests this function.

5.3 swap subroutine

Write a subroutine which takes two real numbers as arguments and returns them swapped. Write a
small program which tests this subroutine.

5.4 circle subroutine

Write a subroutine area and circumference which takes as argument the diameter D of a circle and
respectively returns its area and circumference. Write a small program which tests this subroutine.

5.5 Using allocatable arrays

To practice the use of dynamic (allocatable) arrays do the following two excercises. Information
including examples of allocatable arrays can be found in Appendix A.

1. Write a Fortran program which stores the integer numbers 1, 2, . . . , n in a one-dimensional
integer array of length n. Declare the array using the allocatable attribute. Read the
number n from standard input and after allocating the array use the array to do the following
experiment. In a do-loop over n cycles with index i = 1, 2, . . . , n, store the loop index in the
array position indicated by the loop index. In a second do-loop perform a summation of the
array elements. Finally print the computed sum value and check the result by comparing it

14

with the outcome of the intrinsic function sum 4 and with the analytic result, n(n + 1)/2 to
validate your program code.

Repeat this experiment for increasing values of n until you get a system error message con-
cerning an array that can not be allocated. This way you can find out, by trial and error,
about the system dependent array size limit nmax.

For large integer values n > nmax you will find that the analytical value for the array sum
difffers from the value obtained by summing the array elements. This can be explained by
the fact that the (default) internal machine representation of integers in the binary system
is based on four bytes of eight binary digits (bits) each. With one bit used to indicate the
sign (±), this leaves 31 bits or 231 − 1 for the maximum integer that can be represented. 5

Verify this integer overflow interpretation by redefining the summation variables as real type
variables.

2. To investigate the system dependent maximum array size more systematically do the following
experiment. Write a program that contains a single endless do-loop. Increment the variable
msize from an initial zero value by one million in each loop cycle. Allocate an integer array
m_array of size msize. After allocating the array check the allocated array size with the

Fortran intrinsic size function, as in the example program of appendix ??, and print the
determined array size.

Next fill the array in an inner loop, as in the previous exercise, with the array index. Deallocate
the array at the end of each cycle of the endless loop.

Eventually the program will crash with a system error message stating that the array could
not be allocated. Include the last few lines of program output and the system error message,
together with your program source text in your report.

If the filling of the array slows the program too much to your taste, modify the program such
that only a fixed number of evenly spaced array elements is filled, say 1, 1 + msize/10, 1

+ 2*msize/10,

5.6 Two-dimensional tables of functions

In the first module of the programming course writing and reading tables of functions f(x) of a
single variable played an important role. Here we extend this practice to functions of two variables
f(x, y) resulting in 2-D tables that are written to file in a suitable format for plotting with the
graphics program gnuplot (see Appendix D).

Write a Fortran program for the computation and file output of a 2-D table of grid point values
of a given function of two variables f(x, y). The 2-D rectangular grid is defined by the following
specifications:
The grid point coordinates (xi, yj) are defined as, xi = x1 + (i − 1)∆x, i = 1, . . . , nx and yj =
y1 + (j− 1)∆y, j = 1, . . . , ny. Where ∆x = (xnx −x1)/(nx− 1) and ∆y = (yny − y1)/(ny − 1). This
defines a so called equidistant grid of nodal points.

The program should be designed as follows:

1. Read the grid specifications in the main program from the standard input device (stdin) as
xmin,xmax,nx and ymin,ymax,ny respectively. The values of the grid spacing ∆x and ∆y are
computed by the program from the input according to the spec’s.

4The Fortran intrinsic function sum applied to a array returns the sum of the array elements.
5The integer byte length can be increased from four to eight by the gfortran compiler flag -fdefault-integer-8

15

2. To distinguish between different implemented functions in the program we apply an integer
switch variable ifunctype. The value of ifunctype is read from stdin.

3. Grid values of the function f(x, y) are computed in a properly dimensioned (nx,ny) 2-D
allocatable real array datarray.

4. The function values f(x, y) are computed in two nested do-loops over columns and rows of the
rectangular grid. For each grid point the corresponding function value is computed in a call
of a Fortran function func with the following header,

real function func(ifunctype,x,y)

implicit none

integer ifunctype

real x,y

Depending on the value of ifunctype different implemented functions are evaluated. This
function should contain an error trap where an error messages is printed and a stop state-
ment is executed when a not-implemented value of ifunctype is input of the function.

5. After filling the function table array with grid point values write the table to a file in a format
suitable for plotting with gnuplot (see Appendix D). Writing the table array datarray should
be done in a subroutine call with the following header,

subroutine writdat2d(xmin,xmax,nx,ymin,ymax,ny,datarray,file_out)

implicit none

integer nx,ny

real xmin,xmax,ymin,ymax

real datarray(ny,nx)

character(LEN=*) file_out

Apply your program to your favorite function of two variables 6 and produce a contour plot and a
color plot with gnuplot.

6An example suitable for testing different grid resolutions is f(x, y) = sin(knx) cos(kmy), where the wavenumbers
are defined as kn = n/(2π), km = m/(2π), corresponding to wavelengths λn = 2π/kn = 1/n, λm = 2π/km = 1/m.

16

Appendix

A A Fortran Tutorial

A.1 Introduction

Fortran is the predominant programming language in the field of scientific and numerical comput-
ing. In order to use a Fortran program, the program source text, possibly extended with external
procedures must be translated in to machine language (compiled) using a compiler program. On
Linux/unix systems an open software (GNU) Fortran 77 compiler g77 is available. Recently the
GNU Fortran 95/2003 compiler (gfortran)has also become available. This compiler has been in-
stalled on the institute network and will be used in this course.

A.2 Installing and executing a Fortran program

To create a simple Fortran program, the Fortran source text of the program must be written in a
text file, say prog.f90, using a text editor, similar as with the preparation of a Scilab script. The
file name extension .f90 is a (compiler) requirement for the use of the Fortran 90 extended source
text format (see below). When the complete program text is available the program can be installed
using the Fortran compiler, gfortran, by typing on the command line,

gfortran prog.f90

If no syntax errors are found by the compiler, this command will produce an executable file with the
default name a.out, or when using the -o option as in,

gfortran -o exec-file prog.f90

the executable will be written to the file exec-file. The program can then be executed by typing on
the command line the name of the executable file, either ./a.out or ./exec-file. More information
on the many possible compiler options is available through the online Linux manual page which can
be accessed by typing man gfortran from the command line.

17

Figure 1: From Fortran source text file to resulting program output (text/graphics). An executable
program file prog is made from (a) Fortran source text file(s) with a compiler/linker program
gfortran.

As a first example of installing and running a rudimentary Fortran program consider the following
three line ‘main program’,

program hello_world

print *, ’hello world’

end program

This program is compiled and installed in a default executable file a.out in the working directory
by typing the command,

gfortran hello_world.f90

Typing ./a.out from the command line will then produce the output line

hello world

A.2.1 Input/output redirection

Programs often read input from ascii (text) input files and write output results to output text files.
In case your program uses a single input and/or output file, a convenient way to implement this
is through the use of the standard input (stdin) and output (stdout) device. When reading from
stdin your program will expect input from the keyboard, when writing to stdout your program
writes output to the screen. This is convenient while developing a small program, but in case of
extended program input and output, it is more convenient to read input from a text file which has
been prepared in advance and print results to another text file which can be inspected using a text
editor, instead of printing on the screen. A program which has been prepaired to use stdin and
stdout can be used without modification to read from a named input file, prog.in and write output
to the named file prog.out using so called input/ouput redirection by typing
prog < prog.in > prog.out

A.3 Fortran source text formats

Fortran text is not case sensitive, upper and lower case text are not distinguished by the Fortran
compiler. Fortran source texts come in two alternative formats, known as fixed and free source
format, distinguished by the two filename extensions .f and .f90 respectively. The fixed format is
required by the older Fortran 77 standard. Here source text lines are truncated after position 72 and

18

the first 6 positions are reserved. Position 1 through 5 can be used for 5 digit numerical statement
label fields and postion 6 for a continuation character (see below).

Comment lines in fixed format files are specified by a c or * in position 1. In free format source,
text following the ! character up to the end of the text line is interpreted as comment text.

Fortran source lines can be continued over several text lines. In the fixed source format this
is done by having a blank (space) in position 6 of the initial statement line and a non-blank (and
non-zero) character in position 6 of the continuation lines. In free source format a source line ended
by the & character is continued on the next text line.

A.4 Program variables

All variables used in Fortran programming units must be declared with an explicit type declaration.
This is enforced by including the statement implicit none as the second line of code of every
program unit. The main intrinsic data types of the Fortran language are integer, real, logical
and character. Integer and real variabeles can have the value of integer and (rounded) real numbers
respectively. 7

Logical variables take the values true or false, denoted as .true. and .false. in Fortran
assignment statements. Character variables are used to hold text strings of characters. Besides
intrinsic data types Fortran 90 and later versions also support so called derived types which can be
defined by the user.

Program units are split in two blocks

1. A declaration block containing all the necessary declaration statements.

2. An execution block containing all the executable statements, i.e. all statements that result in
program actions.

The following example shows the declaration of several real variables and a number of assignment
statements where values are assigned to program variables. Arithmetic expressions are used in the
assignments containing, the arithmetic operators +,-,*,/ for summation, subtraction, multiplica-
tion and division and the ** for exponentiation. Also used is the Fortran intrinsic function for the
square root sqrt. Finally values of variables are written on the screen in a print statement.

program quad_polynom_roots

implicit none

real :: a,b,c,x1,x2

a = 1

b = -6

c = 6

x1 = (-b - sqrt(b**2 -4*a*c)) / (2*a)

x2 = (-b + sqrt(b**2 -4*a*c)) / (2*a)

print *, ’x1=’,x1,’ x2=’,x2

end

7Real numbers are represented with finite precision using binary number representation. The precision depends on
the number of binary digits (bits) used in the representation. The default is 32 bit (4 bytes) representation. When
higher precision is required to prevent loss of accuracy real type variables should be declared with double (8 byte)
precision using real*8 as type declarator.

19

A.4.1 Variables of type character

Character type variables are used in Fortran programs to manipulate text strings. This is particularly
applied in the definition of filenames (see A.8.1).

Character variables must be declared with a length parameter as in the following example.

program exm_char

implicit none

character(len=5) text_string

text_string(1:2) = ’aa’

text_string(3:4) = ’bb’

text_string(5:5) = ’c’

print *, text_string

end program exm_char

This produces the output aabbc. In this example a substring mechanism is used to define
subsets of the character string. ?? contains an example of character variables in producing simple
‘print-plots’ of numerical data.

A.5 Indexed variables

Fortran contains a rich syntax for dealing with indexed variables or arrays. We only mention some
simple applications of 1-D and 2-D arrays here, illustrated in the following program example.

Array variables must be declared as such and this can be done in several alternative ways. We use
here only one type of array declaration that can be used in case the array index starts at the default
value one. The array attribute of the variables is implied here by specification of the bracketed
upper value of the array indices in the respective dimensions.

program mat_vec

implicit none

real :: vec(2)

real :: res(2)

real :: mat(2,2)

vec(1) = 1.0

vec(2) = 0.5

print *, ’vec’, vec

mat(1,1) = 1.1

mat(1,2) = 1.2

mat(2,1) = 2.1

mat(2,2) = 2.2

print *, ’mat’, mat

res(1) = mat(1,1)*vec(1) + mat(1,2)*vec(2)

res(2) = mat(2,1)*vec(1) + mat(2,2)*vec(2)

print *, ’res’, res

end

This program produces the following screen output,

vec 1.000000 0.5000000

mat 1.100000 2.100000 1.200000 2.200000

res 1.700000 3.200000

A.6 Program Control Structures (constructs)

A.6.1 Program loop statements

To work with indexed variables in so called program loops, the Fortran do-end do construct is used.
The syntax of this construct can be specified by,

20

do i = i_begin, i_end, i_step

... executable statements ...

end do

The statements between do and end do will be executed repeatedly for subsequent values
of the index variable, i = i_begin, i_begin + i_step, i_begin + 2*i_step, ..., i_end.
Note that the index increment may be negative. The loop statement block is not executed if
the index exceeds i_end in the first loop cycle.

program mat_vec_do_loop

implicit none

real vec(2)

real res(2)

real mat(2,2)

integer i,j,n

n=2

vec = 0.0 ! initialise array using vector syntax

do i=1, n ! fill

vec(i) = 1.0/i ! the vector

end do ! array

print *, ’vec=’,vec ! write the vector array on the screen

mat = 0.0 ! initialise the (2X2) matrix

do i=1,n ! fill the matrix

do j=1,n ! in nested loops over

mat(i,j) = 1.0/(1+ abs(i-j)) ! columns (inner loop j)

end do ! and rows (outer loop i)

end do

print *, ’mat=’, mat ! write the matrix

res = 0.0

do i=1,n ! matrix-vector multiplication

do j=1,n ! in nested loops over

res(i) = res(i) + mat(i,j)*vec(j) ! columns (inner loop j)

end do ! and rows (outer loop i)

end do !

print *, ’res=’, res ! write the result vector

end program mat_vec_do_loop

This program produces the following screen output,

vec= 1.000000 0.5000000

mat= 1.000000 0.5000000 0.5000000 1.000000

res= 1.250000 1.000000

A special case of a Fortran do-loop is used when the number of loop cycles is not known in advance.
This is implemented as an infinite loop which exits when an explicit stop criterium is met.

do

... executable statements ...

if (logical expression) exit

... executable statements ...

end do

The loop iteration is stopped when logical expression results in the value .true. and program
control continues at the first exectutable statement following end do. This construct is used in
controlling the convergence of iterative computations such as evaluation of series expansions, or
iterative computation of the roots (zero points) of a non linear function.

21

A.6.2 Conditional Statements and logical expressions

To control the program flow in computer programs conditional statements are used. The if (...

) exit in the above infinite do-loop is an example of this. Conditional statements switch the
program control flow depending on the value of a logical expression as in the example below. The
main construct involving a conditional statement is the if then else end if construct.

program exm_ifthenelse

implicit none

integer i, nmax

logical even

character(len=5) label

nmax = 3

do i=-nmax,nmax

even = mod(i,2) == 0 ! intrinsic modulo function

if (even) then

label = ’even’

else

label = ’odd’

end if

if (i <=-2) then

print *, i, ’ is ’,label, ’ and less or equal minus two’

else if (i > -2 .and. i < 0) then

print *, i, ’ is ’,label, ’ and negative’

else if (i == 0) then

print *, i, ’ is ’,label, ’ and zero’

else

print *, i, ’ is ’,label, ’ and positive’

end if

end do

end program

Note the use of the ==, <=, > and < relational operators in the if then statements. This
program illustrates also the use of logical expressions and logical variables. The program produces
the following screen output,

-3 is odd and less or equal minus two

-2 is even and less or equal minus two

-1 is odd and negative

0 is even and zero

1 is odd and positive

2 is even and positive

3 is odd and positive

A.7 Program Input/Output

In general it is advisable, in setting up a modelling experiment, to enter the model parameters
in a text file from which they can be read by a modelling program. This way a flexible program
set-up can be used which will be applicable, not just for a single modelrun, but for a range of
models. Reading input data from files and echoing input data to a program log-file is essential for
documenting modelling experiments. Writing modelling results to output data files is necessary for
postprocessing and reporting.

To read data from input files and write results to output files several input/output (I/O) functions
are available. We show here the open and close statemens for connecting respectively disconnecting
data files to your Fortran program and the read, write and print statements.

22

program exm_io

implicit none

integer unitin, unitlog, unitout

integer i,ndata_out

character(len=80) fname_data_out

unitin = 11

open(unitin,FILE=’exm_io.in’) ! open the input file

read(unitin,*) ndata_out ! read # output data

read(unitin,*) fname_data_out ! read filename output data

unitlog = 12

open(unitlog,FILE=’exm_io.log’) ! open the log file

write(unitlog,*) ’ndata_out =’, ndata_out

write(unitlog,*) ’fname_data_out=’, fname_data_out

unitout = 13

open(unitout,FILE=fname_data_out) ! open the output file

do i=1,ndata_out ! write output data

write(unitout,*) i, i**2

end do

close(unitin) ! close all open files

close(unitlog)

close(unitout)

end program

In this example different files are connected to the program simultaneously that can be accessed
through a unique logical unitnumber. Note how file names are specified either as literal character
constants or as character variables in the open statements.

A.8 Procedures, subroutines and functions

Two types of program procedures exist in Fortran, subroutines and functions. Subroutines must be
executed through an explicit ’procedure call’ statement, where a list of parameters is passed to the
procedure as in the example below.

program exm_subroutine

implicit none

real xtable(10),ytable(10)

integer i,n

real a,b,dx,xmin,xmax

n=3

xmin = 0.0; ! set range of x table

xmax = 2.0; !

dx = (xmax-xmin)/(n-1); !

a = 2.0; ! set parameters passed

b = 1.0; ! to the subroutine

do i=1,n

xtable(i) = xmin + (i-1)*dx

call subr(a,b,xtable(i),ytable(i))

print *, ’i=’,i,’ x=’,xtable(i),’ y=’,ytable(i)

end do

end program

!---

subroutine subr(a,b,x,y)

implicit none

real a,b,x,y

y = a * x + b

23

end subroutine

Note how individual elements of the table x, y arrays are passed as so-called actual parameters
from the main program to the subroutine. The corresponding parameter in the subroutime source
text is referred to as a formal parameter. The names of the actual and formal parameters may be
different as in this example.

A number of often used program procedures is available in Fortran as intrinsic functions. Examples
are procedures for the evalution of math functions like the square root, sine and cosine (sqrt, sin,
cos) etc. In the following example a similar procedure as in the foregoing example is implemented
as an external (non-intrinsic) function. The function is declared as a variable of the same name
as the function and the external procedure nature is specified as a so called attribute. A list of
attributes is terminated by a double semicolon.

program exm_function

implicit none

real xtable(10),ytable(10)

integer i,n

real a,b,dx,xmin,xmax

real, external :: func ! declare func as external function

n=3 ! def. table length <= 10

xmin = 0.0; ! set range of x table

xmax = 2.0; !

dx = (xmax-xmin)/(n-1); !

a = 2.0; ! set function parameters

b = 1.0; !

do i=1,n

xtable(i) = xmin + (i-1)*dx

ytable(i) = func(a,b,xtable(i))

print *, ’i=’,i,’ x=’,xtable(i),’ y=’,ytable(i)

end do

end program exm_function

!---

real function func(a,b,x)

implicit none

real x,a,b

func = a * x + b

end function func

These programs produce the following screen output,

i= 1 x= 0.0000000 y= 1.000000

i= 2 x= 1.000000 y= 3.000000

i= 3 x= 2.000000 y= 5.000000

Note the difference between the use of the subroutine and the function in returning the computed
result from the procedure to the ‘calling program unit’. In the subroutine example the result is passed
as a procedure parameter. In case of a function the result must be returned by assigning the result
value to a function variable with the same variable name as the function procedure. Note also that
in every program unit, main program, subroutine or function, all the occuring variables must be
declared locally in an explicit type declaration.

A.8.1 A subroutine for writing table data to a 2-column text file

The following subroutine for writing table data to a two-column text file is given in

subroutine writdat(ndata,xdata,fdata,filename)

implicit none

24

integer ndata

real, dimension(ndata) :: xdata, fdata

character(LEN=*) filename

!* locals

integer i

open(UNIT=9,FILE=filename)

do i=1,ndata

write(9,*) xdata(i),fdata(i)

end do

close (9)

return

end subroutine writdat

25

B Supplementary Fortran programming exercises

B.1 Introduction

B.1.1 Computation of arithmetic, geometric and harmonic mean values

One can define the arithmetic, geomteric and harmonic averages of n values as follows

A =
1

n

n∑
i=1

xi G = n

√√√√ n∏
i=1

xi H =
n

n∑
i=1

1
xi

• create an array tab of size m=33

• fill it with random numbers between 0 and 1

• compute A, G, and H with do loops

• compute A, G, and H in one line of code by means of intrinsic functions

• multiply the array tab by 1023. Compute A,G,H again. Do the results conform with your
expectations ? How could we compute G differently ?

B.1.2 Computation of the p-norm of a vector

The Euclidean norm of a vector a = (a1, a2, a3) in three dimensions is given by

|a|2 =
√
a2

1 + a2
2 + a2

3 or |a|2 = (a2
1 + a2

2 + a2
3)1/2

One can generalise this by defining the p-norm of an n−dimensional object u as follows:

|u|p = (|u1|p + |u2|p + |u3|p + |u4|p + ...|un|p)1/p =

(
n∑

i=1

|ui|p
)1/p

• write a subroutine pnorm which computes the p-norm of an array uuu of size n

• write a simple program which

1. creates an array of size m=123

2. fills the array with random numbers between -π and π,

3. computes and displays the 1, 2, 5, 10, 100-norm of this array

B.1.3 The bubble-sort procedure for sorting numbers

The bubble-sort algorithm is a simple method for sorting a list of numbers, ai, i = 1, . . . , n, in
ascending order that works according to the following stepwise specification,

1. Compare a1 and a2 and swap the numbers if a2 < a1

2. Compare a2 and a3. If a3 < a2 swap a3, a2 and repeat item 1

3. Repeat item 2 and for all subsequent numbers in the list: comparing it succesively with its
predecessor in the list and swapping until a smaller number is encountered.

Write a subroutine with the following header that will apply the bubble-sort algorithm to a list
of integers

subroutine bubblesort(ndata,numbers)

implicit none

integer ndata, numbers(*)

...

end subroutine bubblesort

26

B.1.4 A function to determine the length of a 2-column data file

Subroutine writdat A.8.1 is used frequently in this course for writing 2-column data tables to a
text file. In order to read the data from such 2-column files in your programs it is necessary to
determine first the length of the file. This way it can be verified that arrays of sufficient length are
used to store the file data in memory.

To this end write a fortran function with the following header to determine the number of data
on the file.

integer function scandat(filename)

implicit none

character(LEN=*) filename

...

end function scandat

The number of data is returned through the function name.

Hints:

• Use an endless-do construct as in A.6 to read the data lines on the file.

• Apply an extended version of the read statement, specifying the END clause, reading the
character variable textstring

do

...

read(UNIT=logical_unit,FMT=’(a)’,END=100) textstring

...

end do

100 continue

This causes the program to continue at the 100 continue line when the end of file condition
occurs.

B.1.5 A function to read data from a 2-column data file

Subroutine writdat A.8.1 can be used for writing 2-column data tables to a text file. The number
of data on an existing file can be determined by scanning the file with function scandat defined
above in B.1.4.

Once the number of data on a file is known one can read the 2-column data from the file in
two 1-D arrays of sufficient size. This can be done in a similar way as in writing the data to file in
subroutine writdat listed in A.8.1.

To this end write a fortran subroutine readdat with the following header to read the 2-column
data from the input data file.

subroutime readdat(ndata,xdata,ydata,filename)

implicit none

integer ndata

character(LEN=*) filename

...

end subroutime readdat

Hints:

• Test your implementation of readdat by applying it in a main program where the call to
readdat is preceded by a call to scandat.

• Build an array length check in your program that produces an error message and a program
STOP when the number of file data exceeds the declared array length.

27

B.1.6 Printplot of a 2-column data table

In section ?? printplots of 2-column data sets have been introduced. A subroutine for initializing a
simple plotframe in a Fortran character array is listed there.

Once the plot frame has been initialized a 2-column data set can be plotted. To this end the
ndata data points must be mapped in the 2-D rectangular character buffer screenbuf of nrow lines
and ncol columns using substring operations in a similar way as in the example in ?? in ??.

Write a subroutine printplot with the following header for mapping the 2-column data in the
character array screenbuf

subroutine printplot(xdata,ydata,ndata, &

xmin,xmax,ymin,ymax, &

nrow,ncol,screenbuf)

implicit none

real, dimension(*):: xdata, ydata

real xmin,xmax,ymin,ymax

integer ndata,nrow,ncol

character(LEN=ncol) screenbuf(nrow)

...

end subroutine printplot

Hints:

• Parameters xmin,xmax,ymin,ymax define the represented data window. This allows to zoom
in on the data.

• Mapping data points xi, yi, i = 1, . . . ndata within the data window [xmin, xmax]× [ymin, ymax]
is done by the following transformation,

irow = 1 + nint((nrow-1)*(ydata(i)-ymin)/(ymax-ymin))

jcol = 1 + nint((ncol-1)*(xdata(i)-xmin)/(xmax-xmin))

screenbuf(nrow-irow+1)(jcol:jcol) = symdata

• Test your implementation of printplot by applying it in a main program where the call to
printplot is preceded by a call to fill_frame (??) and followed by a call to a printout of
the screenbuffer by a call to the following routine print_screenbuf

subroutine print_screenbuf(nrow,ncol,screenbuf)

implicit none

integer nrow, ncol

character(LEN=ncol) screenbuf(nrow)

integer i

! print the screen buffer array

do i =1, nrow

write(6,’(a)’) screenbuf(i)(1:len_trim(screenbuf(i)))

end do

return

end subroutine print_screenbuf

B.1.7 Removal of the mean value of a time series

Problem (Exam) Imagine you want make a computer program that can perform simple data
processing on measurement data that are read from an input file. The measurement data are
represented by a time series si = s(ti), i = 1, . . . , N that correspond to signal values from a digital
measurement device, say a seismograph.

A single time series is stored as a 2-column text file, containing real number data, where the
first column represents the measurement times ti, i = 1, . . . , N and the second column contains the
measurement data values si, i = 1, . . . , N .

28

Suppose you want to process the measurement time series by removing the meanvalue from the
data. To this end you want to transform the input time series data si into a output time series
s
′
i = si − µ, where µ = 1

N

∑N
i=1 si is the mean value of the input data.

After procesing the data you want to write the resulting time series to an output file with an
identical file structure as used for the input data.

Assignment Write a fortran program for the data processing task described in the introduction.
The program must be created according to the following specifications:

• The program applies two 1-D allocatable arrays for the measurement time values and the
measurement data values respectively.

• The program reads the number of avalailable data, N , from the standard input device (unit
6).

• The program reads the input time series data from an input file named timeseries_in.dat

and writes the processed time series to an output file name timeseries_out.dat

• The output file is written using a fortran subroutine writdat with the following routine header,

subroutine writdat(ndata,xdata,ydata,filename)

integer ndata

real xdata(*),ydata(*)

character(LEN=*) filename

N.B. you don’t have to write this subroutine.

• Input data are processed in a do-loop over the avaible data points and the output data values
are overwriting the input data, thereby using a single array for both input- and output data.

29

C Some useful Linux commands

ls gives a list of the files and subdirectories that
are located in this directory

ls -l print also access attributes, time-stamp and size
ls q* list all files and directories that begin with the letter ’q’
ls *q or end with q
ls q*p or begin with ’q’ and end with ’p’
ls *.3* or contain ’.3’

pwd gives the pathname (string) of the current directory
(your location in the directory tree)

. means the current directory

.. the parent directory above the current directory
ls ../.. gives a list of files in the directory two levels up in

the directory tree

cd dirname change to directory dirname
cd .. go one level up in the directory tree
cd go to home-directory (this is your home base and

usually the top of the directory tree of your file space)

prog < inputfile redirection: instead of typing input for prog yourself,
prog uses input from inputfile (very useful for
large programs or programs that are executed many times!)

program < inputfile > outputfile the same goes for output data (into file instead of screen)

rm file remove file
rm p* remove all files that begin with ’p’

cp a b copy file a to file b
cp path/file1 . copy file1 in directory path to current directory
cp path1/file1 ../path2 copy path1/file1 to ../path2’
cp -a ∼home/examples . copy all contents from the tree ∼home/examples to the current directory

-a means archive (preserves timestamps)

mv ../file . move: works just like cp, except that the original
is thrown away

mv name1 name2 move can also be used for renaming files

mkdir dirname make a new directory dirname
rmdir dirname remove directory dirname

if the directory is not empty try ’rm -rf dirname’
make first sure you don’t throw anything important away,
data cannot be revived in Linux!

30

CTRL C kill the job that is executing
CTRL L clean up the screen
prog & execute a program and continue working in Linux

(so that you don’t have to wait for your program to be finished,
this also works with redirection)

man online command manual. For instance, try ‘man grep’
if you want to know more about matching strings in a file.
Or ’man diff’ if you want to know how you can check the
differences between two files.

make when a ’Makefile’ is available, make automatically compiles
your program. An executable ’example’ is made using
the source code in ’example.f90’

rehash Refreshes your system search tables.
Apply this after first time installation of a new program
to prevent ‘command not found’ when executing your program

which prog Prints pathname of the exectutable prog

lpr -Plw print on printer ’lw’ (third floor)
lpq -Plw which printing jobs are is the cue for printer ’lw’
lprm -Plw jobnumber kill the job jobnumber on ’lw’

(in case you are busy printing something you don’t want to)

In the end it will save you a lot of time if you organise your files in a directory tree. This means
that below your home directory you make several subdirectories. In those subdirectories you make
subsubdirectories, etc. Then order your files in the directories, which have logical names such as:
∼home/exercise2/part3/data/.

There are many more combinations in Linux. Try ’h’, ’ls -l’, ’ls -la’, ’l’, ls -la’ or try your own
combinations.

Want to know more about Linux/UNIX? There is a good manual available at
www.cs.uu.nl/∼piet/docs/unix.pdf (in Dutch).

31

D Data visualisation with GNUPLOT

Gnuplot is a portable command-line driven graphing utility for Linux, MS Windows, OSX, and
many other platforms. The source code is copyrighted but freely distributed (i.e., you don’t have
to pay for it). It was originally created to allow scientists and students to visualize mathematical
functions and data interactively, but has grown to support many non-interactive uses such as web
scripting. It is also used as a plotting engine by third-party applications like Octave. Gnuplot has
been supported and under active development since 1986. The official website is at this address:
http://gnuplot.info/ Here are a few examples of what can be done with gnuplot:

Gnuplot is distributed with a large set of scripts that demonstrate various features. There are all
available and clearly documented at this address: http://gnuplot.sourceforge.net/demo 4.6/

D.1 Basic 2D plots

In what follows, we assume that a dataset of values has been obtained and stored in the file datas.dat.
This file contains two columns of values. Let us create the following gnuplot script: script1.

set term postscript eps color → output is set to be an encapsulated color postscript
set xlabel ’time (s)’ → set the label of x-axis
set ylabel ’dissipation (W)’ → set the label of y-axis
set output ’plot1.eps’ → set the name of graphics file
plot ’datas.dat’ title ’measured’ → plot the data

We then run gnuplot on this script as follows:

> gnuplot script1

The following plot is then generated in a graphics file plot1.eps: 8

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25 30 35 40 45 50

di
ss

ip
at

io
n

(W
)

time (s)

measured

8The filename extension eps stands for extended postscript. Such files can be visualized by (for example) the viewer
program ghostview, usually available on Linux systems as the command gv.

To include graphics files in reports and manuscripts it is advisable to convert the postscript format into portable
network graphics (png). This can be done by the Linux convert utility. This is illustrated in the following example
where an output pixel density of 300 dots per inch (dpi) is used:
> convert -density 300 plot1.eps plot1.png

32

(Some) Options:

• set grid : display background grid

• set log x and set log y : use logarithmic scales on the x- and y-axis

• set size square : obtain a square plot

• plot[-1.:4][0:5] : provides the range of the plot in the x and y directions

• plot ’datas.dat’ with lines : plots data with a line

• plot ’datas.dat’ with linespoint : plots data with a line and points

Let us llustrate the use of these additional options in the following gnuplot script: script2.

set term postscript eps color → output is set to be an encapsulated color postscript
set grid → display background grid
set xlabel ’time (s)’ → set the label of x-axis
set ylabel ’dissipation (W)’ → set the label of y-axis
set output ’plot2.eps’ → set the name of graphics file
set log y → set logarithmic scale on y-axis
set size square → trigger square plot
set xtics 7 → set x tics spacing to 7
plot[7:49][] ’datas.dat’ with linespoint notitle → set the name of graphics file

The following file plot1.eps is then generated:

 10000

 100000

 1e+06

 7 14 21 28 35 42 49

di
ss

ip
at

io
n

(W
)

time (s)

D.2 Surfaces and 3D plotting

Let us now assume that the datas3D.dat file contains three columns of values: the x and y coordinates
of points and a measured quantity at these points. gnuplot has several options for visualization of
such data sets. 9

D.2.1 Example - a surface plot of disconnected symbols

In the following example the data are plotted as a surface in a 3D box.
set term postscript eps color → output is set to be an encapsulated color postscript
set xlabel ’x (km)’

set ylabel ’y (km)’

set output ’plot3.eps’

splot ’datas3D.dat’ title ’vel (cm/yr)’ → splot command to generate 3D plot

9Such 3-column data files are written by subroutine writdat2d (see Appendix ??) for regular gridded data applied
in exercises 5.6 and ??.

33

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

vel (cm/yr)

x (km)

y (km)

D.2.2 Example - a color filled connected surface

This example illustrates the use of a connecting surface and color coding of the surface height.

set terminal postscript eps color

set output ’plot4.eps’

set border 4095 front linetype -1 linewidth 1.000

set samples 25, 25

set isosamples 20, 20

set xlabel "x"

set ylabel "y"

set xrange [-15.0000 : 15.0000]

set yrange [-15.0000 : 15.0000]

set zrange [-0.250000 : 1.00000]

set pm3d implicit at s

splot sin(sqrt(x**2+y**2))/sqrt(x**2+y**2)

-15
-10

-5
 0

 5
 10

 15 -15
-10

-5
 0

 5
 10

 15

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

sin(sqrt(x**2+y**2))/sqrt(x**2+y**2)

x

y

-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

D.2.3 Example - a colored map view plot

This example illustrates the use of a regular colored 2-D map view (see set view map) of the 3-D
data surface using an alternative color bar.

set terminal postscript eps color

set output ’plot5.eps’

set border 4095 front linetype -1 linewidth 1.000

set view map

set isosamples 100, 100

unset surface

set style data pm3d

set style function pm3d

set ticslevel 0

set title "gray map"

set xlabel "x"

34

set ylabel "y"

set xrange [-15.0000 : 15.0000]

set yrange [-15.0000 : 15.0000]

set zrange [-0.250000 : 1.00000]

set pm3d implicit at b

set palette rgbformulae 23, 28, 3

splot sin(sqrt(x**2+y**2))/sqrt(x**2+y**2)

sin(sqrt(x**2+y**2))/sqrt(x**2+y**2)

-15 -10 -5 0 5 10 15

x

-15

-10

-5

 0

 5

 10

 15

y

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

D.2.4 Example - contouring data

If one now wishes to plot isocontours of data values, Gnuplot requires the data to be saved in a text
file organized in one of the two following ways:

• One set of 3 coordinates (x y z) per line, with line breaks separating the data, and an empty
line to separate the rows of the matrix of data. This data format is used in data written by
subroutine writdat2d ??, 5.6 and ??.

• One single value (z) per line, with line breaks separating data, and an empty line to separate
the rows of the matrix of data.

Gnuplot script file for plotting 3-D data

set title "Field data u(x,y)"

set xlabel "x-axis"

set ylabel "y-axis"

set contour base

set key outside

def. range of x, y coordinates

set xrange [4e3: 6e3]

set yrange [4e3: 6e3]

def. contour levels and surface style

set cntrparam levels auto 10

set style data lines

outcomment these 2 lines to get x-window output

set output "plot7.eps"

set terminal postscript eps color

plot the file between quotes

splot "grav_accel.gdat"

35

 4000
 4500

 5000
 5500

 6000 4000

 4500

 5000

 5500

 6000

-1.1e-06
-1e-06
-9e-07
-8e-07
-7e-07
-6e-07
-5e-07
-4e-07
-3e-07
-2e-07

Field data u(x,y)

"grav_accel.gdat"
 -3e-07
 -4e-07
 -5e-07
 -6e-07
 -7e-07
 -8e-07
 -9e-07
 -1e-06

x-axis

y-axis

D.2.5 Example - a map view contour plot

The same data as in D.2.4 plot in map view using isocontour lines.

Gnuplot script file for plotting 3-D data

set title "Field data u(x,y)"

set xlabel "x-axis"

set ylabel "y-axis"

set view 0, 0, 1, 1

set contour base

set nosurface

set xrange [4e3: 6e3]

set yrange [4e3: 6e3]

set size square

set cntrparam levels incremental -2e-6, 2e-7, 0

outcomment these 2 lines to get x-window output

set output "grav_accel_contour.eps"

set terminal postscript eps color

set data style lines

splot "grav_accel.gdat"

 4000 4500 5000 5500 6000
 4000

 4500

 5000

 5500

 6000

-1.1e-06-1e-06-9e-07-8e-07-7e-07-6e-07-5e-07-4e-07-3e-07-2e-07

Field data u(x,y)

"grav_accel.gdat"
 -4e-07
 -6e-07
 -8e-07
 -1e-06

x-axis

y-axis

