
Programming and Modelling
(week 40)

C. Thieulot

Institute of Earth Sciences

September 2015



Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs



Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs



Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs



Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs



Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs



Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs



Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs



Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs



Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs



GhostView (1)

In the terminal:
> gv



GhostView (2)

> gv dissipation.eps

(press ’Q’ to quit the application)



ImageMagick

Postscript (or encapsulated postscripts) isn’t a format that text
processors (Word, OpenOffice) accept. Here is how to convert
plots to different formats:

> convert dissipation.ps dissipation.png

> convert dissipation.ps dissipation.jpg

> convert dissipation.ps dissipation.pdf

etc...

convert is part of ImageMagick , available for
Windows, Mac, Linux and even iOS. (www.imagemagick.org)

> man convert → lists all options



Makefile (1)

I If your fortran program consists of a unique .f90 file,
compilation is done as follows:

> gfortran program.f90

I If your fortran program consists of many .f90 file,
compilation can be done as follows:

> gfortran compute stuff.f90 solver.f90

output data.f90 module struc.f90 program.f90

What if the code comprises dozens or hundreds of fortran files ?



Makefile (1)

I If your fortran program consists of a unique .f90 file,
compilation is done as follows:

> gfortran program.f90

I If your fortran program consists of many .f90 file,
compilation can be done as follows:

> gfortran compute stuff.f90 solver.f90

output data.f90 module struc.f90 program.f90

What if the code comprises dozens or hundreds of fortran files ?



Makefile (1)

I If your fortran program consists of a unique .f90 file,
compilation is done as follows:

> gfortran program.f90

I If your fortran program consists of many .f90 file,
compilation can be done as follows:

> gfortran compute stuff.f90 solver.f90

output data.f90 module struc.f90 program.f90

What if the code comprises dozens or hundreds of fortran files ?



Makefile (2)

Example: the elefant code.

(373 fortran files, 40,000 lines of code)



Makefile (3)

Example: the gravity modelling exercise for this week
The whole programs comprises the following fortran files:

write two columns.f90

write three columns.f90

program.f90

The subroutines are given to you, but you have to write the main
program.



Makefile (3)

Example: the gravity modelling exercise for this week
The whole programs comprises the following fortran files:

write two columns.f90

write three columns.f90

program.f90

The subroutines are given to you, but you have to write the main
program.



Makefile (4)

Compiling all the routines and assembling them all into the
executable grav:

> gfortran write two columns.f90

write three columns.f90 program.f90 -o grav

I not practical

I if you modify one file, this approach still requires you to
recompile all fortran files !



Makefile (4)

Compiling all the routines and assembling them all into the
executable grav:

> gfortran write two columns.f90

write three columns.f90 program.f90 -o grav

I not practical

I if you modify one file, this approach still requires you to
recompile all fortran files !



Makefile (4)

Compiling all the routines and assembling them all into the
executable grav:

> gfortran write two columns.f90

write three columns.f90 program.f90 -o grav

I not practical

I if you modify one file, this approach still requires you to
recompile all fortran files !



Makefile (5)

We then create the following file: Makefile (See appendix C)

To compile the whole code:
> make



Makefile (5)

We then create the following file: Makefile (See appendix C)

To compile the whole code:
> make



Wrapping things up: Key concepts

I data types (integer, real, character, ...)

I data structures (numbers, static arrays, allocatable arrays)

I if then else

I do loop

I subroutines and functions

I intrinsic functions

I modules, formats

I open/close file

I compile vs run

I makefile

I plotting (xmgrace, gnuplot)

I shell commands (ls, cd, pwd, ...)



Things you HAVE to know (for the exam)

How to declare

I an integer, a real

I an array (static, or allocatable)

How to write

I a program

I a subroutine, a function

I a do-loop

I an if-then-else statement

How to

I open a file

I write in a file

I close a file

I call a subroutine/function

I pass an array as argument



salt tectonics(1)



salt tectonics(2)



salt tectonics(3)



Grav (1)

The modelling program grav computes the gravity anomaly at the
Earth’s surface of a number of spherical density anomalies in the
subsurface.



Grav (2)

A key idea in numerical modelling: benchmarking

I Your code runs and produces beautiful, tangible results

I How do you know that you haven’t forgotten a minus sign
somewhere ? a factor 2 ?

→ You can run your code on typical experiments/problems to
which we know an analytical solution
→ You can run your code and a commercial/mature code on the
same problem and compare results
→ You can run your code on a problem and compare its results
with real life experimental results



Grav (2)

A key idea in numerical modelling: benchmarking

I Your code runs and produces beautiful, tangible results

I How do you know that you haven’t forgotten a minus sign
somewhere ? a factor 2 ?

→ You can run your code on typical experiments/problems to
which we know an analytical solution
→ You can run your code and a commercial/mature code on the
same problem and compare results
→ You can run your code on a problem and compare its results
with real life experimental results



Grav (2)

A key idea in numerical modelling: benchmarking

I Your code runs and produces beautiful, tangible results

I How do you know that you haven’t forgotten a minus sign
somewhere ? a factor 2 ?

→ You can run your code on typical experiments/problems to
which we know an analytical solution
→ You can run your code and a commercial/mature code on the
same problem and compare results
→ You can run your code on a problem and compare its results
with real life experimental results



Grav (3) - benchmarking the program

A sphere has the same gravitational pull as a point mass located at
its centre: it allows us to calculate its gravitational pull.
Simple mathematics (See Turcotte and Schubert) can be used to
show that at Point P, the vertical component of g is given by



Grav (4) - benchmarking the program


