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Philosophy

1. state the problem in mathematical terms
(relevant variables, corresponding conservation equations)

2. think about data types and structures
(integer, real, complex ? number, array ?)

3. think about output: 2D vs 3D, lines, histograms, ...
→ file format (which plotting software ?)

4. write code piece by piece. Compile/test along the way.

5. benchmark your code

6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

8. filter/analyse/plot datas

9. discuss figures/graphs
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GhostView (1)

In the terminal:
> gv



GhostView (2)

> gv dissipation.eps

(press ’Q’ to quit the application)



ImageMagick

Postscript (or encapsulated postscripts) isn’t a format that text
processors (Word, OpenOffice) accept. Here is how to convert
plots to different formats:

> convert dissipation.ps dissipation.png

> convert dissipation.ps dissipation.jpg

> convert dissipation.ps dissipation.pdf

etc...

convert is part of ImageMagick , available for
Windows, Mac, Linux and even iOS. (www.imagemagick.org)

> man convert → lists all options



Makefile (1)

I If your fortran program consists of a unique .f90 file,
compilation is done as follows:

> gfortran program.f90

I If your fortran program consists of many .f90 file,
compilation can be done as follows:

> gfortran compute stuff.f90 solver.f90

output data.f90 module struc.f90 program.f90

What if the code comprises dozens or hundreds of fortran files ?
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Makefile (2)

Example: the elefant code.

(373 fortran files, 40,000 lines of code)



Makefile (3)

Example: the gravity modelling exercise for this week
The whole programs comprises the following fortran files:

write two columns.f90

write three columns.f90

program.f90

The subroutines are given to you, but you have to write the main
program.
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Makefile (4)

Compiling all the routines and assembling them all into the
executable grav:

> gfortran write two columns.f90

write three columns.f90 program.f90 -o grav

I not practical

I if you modify one file, this approach still requires you to
recompile all fortran files !
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Makefile (5)

We then create the following file: Makefile (See appendix C)

To compile the whole code:
> make
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Wrapping things up: Key concepts

I data types (integer, real, character, ...)

I data structures (numbers, static arrays, allocatable arrays)

I if then else

I do loop

I subroutines and functions

I intrinsic functions

I modules, formats

I open/close file

I compile vs run

I makefile

I plotting (xmgrace, gnuplot)

I shell commands (ls, cd, pwd, ...)



Things you HAVE to know (for the exam)

How to declare

I an integer, a real

I an array (static, or allocatable)

How to write

I a program

I a subroutine, a function

I a do-loop

I an if-then-else statement

How to

I open a file

I write in a file

I close a file

I call a subroutine/function

I pass an array as argument



salt tectonics(1)



salt tectonics(2)



salt tectonics(3)



Grav (1)

The modelling program grav computes the gravity anomaly at the
Earth’s surface of a number of spherical density anomalies in the
subsurface.



Grav (2)

A key idea in numerical modelling: benchmarking

I Your code runs and produces beautiful, tangible results

I How do you know that you haven’t forgotten a minus sign
somewhere ? a factor 2 ?

→ You can run your code on typical experiments/problems to
which we know an analytical solution
→ You can run your code and a commercial/mature code on the
same problem and compare results
→ You can run your code on a problem and compare its results
with real life experimental results
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Grav (3) - benchmarking the program

A sphere has the same gravitational pull as a point mass located at
its centre: it allows us to calculate its gravitational pull.
Simple mathematics (See Turcotte and Schubert) can be used to
show that at Point P, the vertical component of g is given by



Grav (4) - benchmarking the program


