Programming and Modelling (week 40)

C. Thieulot

Institute of Earth Sciences

September 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. state the problem in mathematical terms (relevant variables, corresponding conservation equations)

 state the problem in mathematical terms (relevant variables, corresponding conservation equations)

 think about data types and structures (integer, real, complex ? number, array ?)

 state the problem in mathematical terms (relevant variables, corresponding conservation equations)

- think about data types and structures (integer, real, complex ? number, array ?)
- 3. think about output: 2D vs 3D, lines, histograms, ... \rightarrow file format (which plotting software ?)

- state the problem in mathematical terms (relevant variables, corresponding conservation equations)
- think about data types and structures (integer, real, complex ? number, array ?)
- 3. think about output: 2D vs 3D, lines, histograms, ... \rightarrow file format (which plotting software ?)
- 4. write code piece by piece. Compile/test along the way.

- state the problem in mathematical terms (relevant variables, corresponding conservation equations)
- think about data types and structures (integer, real, complex ? number, array ?)
- 3. think about output: 2D vs 3D, lines, histograms, ... \rightarrow file format (which plotting software ?)
- 4. write code piece by piece. Compile/test along the way.

5. benchmark your code

- state the problem in mathematical terms (relevant variables, corresponding conservation equations)
- think about data types and structures (integer, real, complex ? number, array ?)
- 3. think about output: 2D vs 3D, lines, histograms, ... \rightarrow file format (which plotting software ?)
- 4. write code piece by piece. Compile/test along the way.
- 5. benchmark your code
- 6. fine tune, vary parameters, try end members, push your code

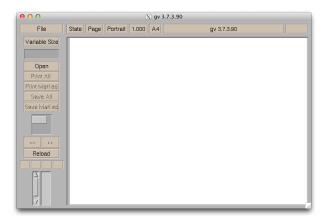
- state the problem in mathematical terms (relevant variables, corresponding conservation equations)
- think about data types and structures (integer, real, complex ? number, array ?)
- 3. think about output: 2D vs 3D, lines, histograms, ... \rightarrow file format (which plotting software ?)
- 4. write code piece by piece. Compile/test along the way.
- 5. benchmark your code
- 6. fine tune, vary parameters, try end members, push your code

7. produce relevant datas

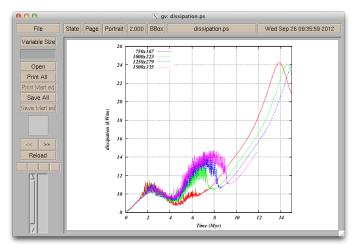
- state the problem in mathematical terms (relevant variables, corresponding conservation equations)
- think about data types and structures (integer, real, complex ? number, array ?)
- 3. think about output: 2D vs 3D, lines, histograms, ... \rightarrow file format (which plotting software ?)
- 4. write code piece by piece. Compile/test along the way.
- 5. benchmark your code
- 6. fine tune, vary parameters, try end members, push your code

- 7. produce relevant datas
- 8. filter/analyse/plot datas

- state the problem in mathematical terms (relevant variables, corresponding conservation equations)
- think about data types and structures (integer, real, complex ? number, array ?)
- 3. think about output: 2D vs 3D, lines, histograms, ... \rightarrow file format (which plotting software ?)
- 4. write code piece by piece. Compile/test along the way.
- 5. benchmark your code
- 6. fine tune, vary parameters, try end members, push your code


- 7. produce relevant datas
- 8. filter/analyse/plot datas
- 9. discuss figures/graphs

GhostView (1)


In the terminal:

> gv

GhostView (2)

> gv dissipation.eps

(press 'Q' to quit the application)

ImageMagick

Postscript (or encapsulated postscripts) isn't a format that text processors (Word, OpenOffice) accept. Here is how to convert plots to different formats:

- > convert dissipation.ps dissipation.png
- > convert dissipation.ps dissipation.jpg
- > convert dissipation.ps dissipation.pdf
 etc...

convert is part of ImageMagick , available for Windows, Mac, Linux and even iOS. (www.imagemagick.org)

> man convert \rightarrow lists all options

Makefile (1)

If your fortran program consists of a unique .f90 file, compilation is done as follows:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

> gfortran program.f90

Makefile (1)

- If your fortran program consists of a unique .f90 file, compilation is done as follows:
 - > gfortran program.f90
- If your fortran program consists of many .f90 file, compilation can be done as follows:

> gfortran compute_stuff.f90 solver.f90
output_data.f90 module_struc.f90 program.f90

Makefile (1)

- If your fortran program consists of a unique .f90 file, compilation is done as follows:
 - > gfortran program.f90
- If your fortran program consists of many .f90 file, compilation can be done as follows:
 - > gfortran compute_stuff.f90 solver.f90
 output_data.f90 module_struc.f90 program.f90

What if the code comprises dozens or hundreds of fortran files ?

Makefile (2)

Example: the *elefant* code.

00			eulot@gaia:~/ELEFANT/3Db	ig/code - ssh - 190×58		
thieulot@gaia code]\$ ls *.f98						
dvect_cloud2.f98	define_bc_213.f90	define_bcT_400.f90	material_layout_317.f90		read_materials_227.f98	stretch_201.f90
dvect_cloud.f90	define_bc_214.f98	define_bcT.f90	material_layout_318.f90	read_exp_227.f98	read_materials_228.f98	stretch_205.f90
dvect_landscape.f98	define_bc_215.f98	diffuse_surface.f90	material_layout_320.f90	read_exp_228.f98	read_materials_229.f98	stretch_210.f90
dvect_lsurface.f98	define_bc_216.f98	diffusion_sp.f90	material_layout_321.f90	read_exp_229.f98	read_materials_238.f98	stretch_211.f90
dvect tracers, 190	define bc 217, f98	directsplyer, 190	material layout 322, 190	read exp 238,198	read materials 231, f98	stretch 212, 190
dvect varid, 190	define bc 218, f98	elefant.f90	material layout 400,190	read exp 231, 198	read materials 232, f98	stretch 213, f90
malvse run.190	define bc 219, f98	erosion 232, f90	material layout 401, 190	read exp 232,198	read materials 233, f98	stretch 215, f90
malvtical solution, f98	define bc 220, f90	evolve grid, 190	material layout.190	read exp 233, 198	read materials 234, f98	stretch 217, f90
cyel, 190	define bc 221, f98	find cell, f90	matrix profile.190	read exp 234, 198	read materials 235, f98	stretch 218, f90
enchmark, f90	define bc 222, f90	footer, 198	matrix setup, f90	read exp 235, 198	read materials 300, f90	stretch 224, f90
undary cloud 228,f98	define bc 223, f90	free memory, 190	modify grid, 190	read exp 300,190	read materials 301, f90	stretch 228, f90
pundary cloud 232, f98	define bc 224, f90	grid setup.190	module structures.f90	read exp 301.190	read materials 302.f90	stretch 232, f90
undary cloud, f90	define bc 225,f90	beader, 198	nu layout 211.f90	read exp 302.190	read materials 303.f90	stretch 301, f90
silloux setup.f90	define bc 226.f98	initialise numps P.f90	nu layout 232.f90	read exp 303.f90	read materials 305.f90	stretch 302, f90
eck_cloud.f90	define bc 227.f98	initialise mumps T.f90	nu layout.f98	read exp 384.f98	read materials 306.f90	stretch 303, f90
lean, f90	define_bc_228.f98	initialise mumps V.f90	open_files.f9ð	read_exp_385.f98	read_materials_307.f90	stretch_305.f90
lose files.f90	define bc 229.f98	interpolate yel on pt2D, f98	output ascii.f90	read_exp_386.f98	read materials 315, f98	stretch 306, f90
loud setup2.f98	define bc 230.f90	int to char, f90	output bin. 198	read_exp_387.f98	read materials 316, f98	stretch 307, f90
loud setup.190	define bc 231.f98	landscape setup, f90	output_mats.f98	read_exp_315.f98	read_materials_317.f98	stretch 315, f90
loud setup old.198	define bc 232.198	lsurface setup, 190	paint stripes, 190	read exp 316, 198	read materials 318, f98	stretch 316, f90
mpute cloudmax, 198	define bc 233, f98	make matrix, 190	phase change 232, 190	read exp 317, 198	read materials 320, f90	stretch 317, f90
mpute convergence, 198	define bc 234, f98	make matrixT, 190	pslib.198	read exp 318, 198	read materials 321, f98	stretch 318, f90
mpute elemental values, 198	define bc 235, f98	material layout 200,190	psplot cloud, 190	read exp 328,198	read materials 322, f98	stretch 400, f90
mpute element centers, f98	define bc 300, f90	material layout 202, f90	psplot cloud zoom, f90	read exp 321, 198	read materials 400, f90	stretch 401, f90
impute elsize, f98	define bc 301, f98	material layout 203, f90	psplot grid2D, f90	read exp 322, 198	read materials 401, f90	stretch, f90
impute fluxes, f90	define bc 302, f90	material layout 204, f90	psplot grid2D zoom, f90	read exp 488, 198	read materials, f90	subtiming, f90
mpute heatflux, f98	define bc 303, f90	material layout 210, f90	psplot grid sandbox.f90	read exp 401, 190	read n compute parameters, 198	temperature layout 208, f9
mpute hydr pressure.f90	define bc 304.f90	material layout 211, f90	gshep2d.f90	read materials 200.190	renumber nodes, f98	temperature layout 209.f9
mpute pressure.f90	define bc 305.f90	material layout 212, f90	read exp 200.190	read materials 201. f90	scan for arguments.f90	temperature layout 212.f9
moute pressure fem. f98	define bc 306.f90	material layout 213.f90	read exp 201.f90	read materials 202.190	set default values.f90	temperature layout 213.f9
mpute gcoords.f98	define bc 307.f98	material layout 214.f90	read exp 202.f90	read materials 203.190	smooth pressure, f98	temperature layout 225.f9
mpute stress profile, f98	define_bc_315.f98	material_layout_215.f90	read exp 283.f98	read_materials_204.f90	SolCx.f90	temperature_layout_232.f9
impute_stress_profite.ise	define_bc_316.f98	material_layout_216.f90	read_exp_284.f98	read_materials_205.f90		temperature_layout_235.f9
mpute timestep.f90	define bc 317, f98	material layout 217, 190	read_exp_285.f98	read materials 206, f90		temperature_layout_303.f9
onpute Trms, f90	define bc 318, f98	material layout 218, 190	read exp 286, 198		solveP.190	temperature layout 385, f9
mpute Trms old. f98	define bc 328, f98	material layout 219, 190	read exp 207,190	read materials 208, 190		temperature layout 306.19
empute viscous dissipation.190	define bc 321.f98	material layout 220, 190	read exp 288,198	read materials 209,190		temperature layout. 198
impute_viscous_dissipation.190	define bc 322.198	material layout 221, 190	read_exp_200.190	read materials 210, 190		template.f90
impute_volume.190	define bc 480, f98	material layout 222, 190	read_exp_209.190	read materials 211.190		tine nl.f90
mpute_vrms.190	define bc 481, f98	material layout 223, 190	read_exp_210.190	read materials 212, f90		timevisu setup.f90
hep2, f90	define bc.f90	material layout 224, f90	read_exp_211.190	read materials 213, f90		tracers setup 212, f98
tine bc 200,190		material layout 226, 190	read_exp_212.190	read materials 214, f90		tracers_setup_212.198
fine bc 201, f90	define bcT 207, f98		read_exp_213.190		strain history 211, 198	tracers_setup_210.190
fine bc 202.f90		material layout 229,190	read_exp_214.190	read materials 216.f90		trim cloud, f90
fine bc 203.f90	define bcT 209, f90	material layout 232, 190	read_exp_215.190		strain history 215, f98	trim landscape.f90
fine_bc_203.190	define bcT 210.f90	material_layout_232.190 material_layout_233.190	read_exp_216.190 read_exp_217.190	read_materials_217.190 read_materials_218.190		trin_landscape.190 tshep2.f90
fine_bc_205.f90	define_bcT_210.f90	material_layout_233.190	read_exp_210.190 read_exp_218.190	read_materials_218.190 read_materials_219.190		update_cloud.f90
fine_bc_205.190	define bcT_211.f98		read_exp_210.190 read_exp_219.f98	read_materials_219.190 read_materials_220.190		vorid setup.f90
fine_bc_206.190	define_bcT_225.f98	material layout 303.190	read_exp_219.190 read_exp_228.f98	read_materials_220.190		write parameters.f98
fine bc 208.190		material layout 304.190	read_exp_220.190	read_materials_222.f98		wrace_parameters.190
fine_bc_208.190		material_layout_304.190 material layout 305.190	read_exp_221.198 read_exp_222.198		strain_history_315.198 strain_history_316.198	
efine_bc_209.190		material_layout_305.190 material layout 306.190	read_exp_222.190 read_exp_223.190	read_materials_223.198 read_materials_224.198		
efine_bc_210.190 efine_bc_211.f90		material_layout_306.190 material layout 315,190	read_exp_223.190 read_exp_224.190	read_materials_224.198 read_materials_225.198		
efine_bc_212.f90 thieulotRoaia codels	define_bcT_306.f98	material_layout_316.f90	read_exp_225.190	read_materials_226.f90	stretch_200.198	

(373 fortran files, 40,000 lines of code)

Makefile (3)

Example: the gravity modelling exercise for this week The whole programs comprises the following fortran files:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

write_two_columns.f90
write_three_columns.f90
program.f90

Makefile (3)

Example: the gravity modelling exercise for this week The whole programs comprises the following fortran files:

write_two_columns.f90
write_three_columns.f90
program.f90

The subroutines are given to you, but you have to write the main program.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Compiling all the routines and assembling them all into the executable grav:

> gfortran write_two_columns.f90
write_three_columns.f90 program.f90 -o grav

Compiling all the routines and assembling them all into the executable grav:

> gfortran write_two_columns.f90
write_three_columns.f90 program.f90 -o grav

not practical

Makefile (4)

Compiling all the routines and assembling them all into the executable grav:

> gfortran write_two_columns.f90
write_three_columns.f90 program.f90 -o grav

- not practical
- if you modify one file, this approach still requires you to recompile <u>all</u> fortran files !

Makefile (5)

We then create the following file: Makefile (See appendix C)

```
000
                                 Makefile - Edited
.SUFFIXES:.out .o .s .c .F .f .f90 .e .r .y .yr .ye .l .p .sh .csh .h
default: code
F90
         = afortran
FLAGS= -c -ffree-line-length-none
OPTTONS =
INCLUDE =
OB IECTS = 
write_two_columns.o\
write_three_columns.o\
program.o
.f90.o:
    $(F90) $(FLAGS) $(INCLUDE) $*.f90
.f.o:
    $(F90) $(FLAGS) $(INCLUDE) $*.f
code: $(OBJECTS)
    $(F90) $(OPTIONS) $(OBJECTS) -o grav
```

Makefile (5)

We then create the following file: Makefile (See appendix C)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

```
000
                                 Makefile - Edited
.SUFFIXES:.out .o .s .c .F .f .f90 .e .r .y .yr .ye .l .p .sh .csh .h
default: code
F90
         = afortran
FLAGS= -c -ffree-line-length-none
OPTTONS =
INCLUDE =
OB IECTS = 
write two columns.o\
write_three_columns.o\
program.o
£90 o
    $(F90) $(FLAGS) $(INCLUDE) $*.f90
.f.o:
    $(F90) $(FLAGS) $(INCLUDE) $*.f
code: $(OBJECTS)
    $(F90) $(OPTIONS) $(OBJECTS) -o grav
```

To compile the whole code:

> make

Wrapping things up: Key concepts

- data types (integer, real, character, ...)
- data structures (numbers, static arrays, allocatable arrays)

- if then else
- do loop
- subroutines and functions
- intrinsic functions
- modules, formats
- open/close file
- compile vs run
- makefile
- plotting (xmgrace, gnuplot)
- shell commands (ls, cd, pwd, ...)

Things you HAVE to know (for the exam)

How to declare

- an integer, a real
- an array (static, or allocatable)

How to write

- a program
- a subroutine, a function
- a do-loop
- an if-then-else statement

How to

- open a file
- write in a file
- close a file
- call a subroutine/function
- pass an array as argument

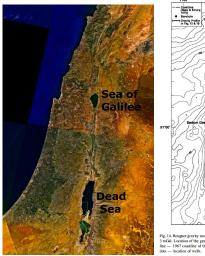
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

salt tectonics(1)

Marine and Petroleum Geology 18 (2001) 779-797

Marine and Petroleum Geology

www.elsevier.com/locate/marpetgeo


Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics

Abdallah Al-Zoubi^{a,1}, Uri S. ten Brink^{b,*}

^aWoods Hole Oceanographic Institution, Woods Hole, MA 02543, USA ^bUS Geological survey, Woods Hole Field Center, 384 Woods Hole Road, Woods Hole, MA 02543, USA

Received 21 March 2001; received in revised form 23 May 2001; accepted 23 May 2001

salt tectonics(2)

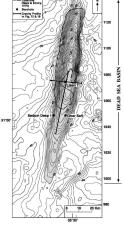
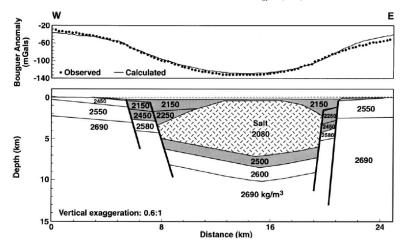
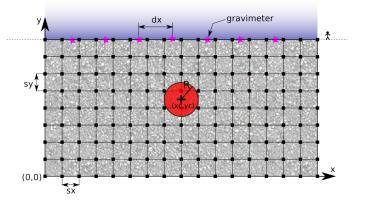



Fig. 14. Bouguer gravity anomaly map of the study area. Contour interval is 3 mGal. Location of the gravity profiles in Figs. 15 and 16. Dashed-dotted line — 1967 coastline of the Dead Sea (after Neev & Hall, 1979). Black dots — location of wells.

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへぐ

salt tectonics(3)


A. Al-Zoubi, U.S. ten Brink / Marine and Petroleum Geology 18 (2001) 779-797

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Grav(1)

The modelling program grav computes the gravity anomaly at the Earth's surface of a number of spherical density anomalies in the subsurface.

A key idea in numerical modelling: benchmarking

Grav (2)

A key idea in numerical modelling: benchmarking

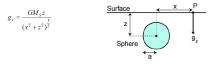
Your code runs and produces beautiful, tangible results ⁶

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Grav (2)

A key idea in numerical modelling: benchmarking

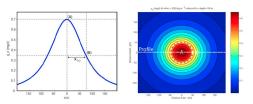
Your code runs and produces beautiful, tangible results ⁴

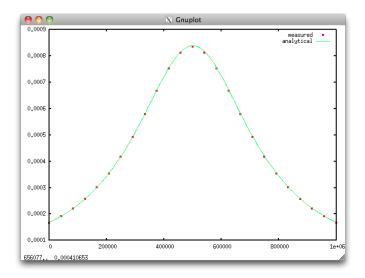

How do you know that you haven't forgotten a minus sign somewhere ? a factor 2 ?

 \rightarrow You can run your code on typical experiments/problems to which we know an analytical solution

- \rightarrow You can run your code and a commercial/mature code on the same problem and compare results
- \rightarrow You can run your code on a problem and compare its results with real life experimental results

Grav (3) - benchmarking the program


A sphere has the same gravitational pull as a point mass located at its centre: it allows us to calculate its gravitational pull. Simple mathematics (See Turcotte and Schubert) can be used to show that at Point P, the vertical component of g is given by


Suppose:

Radius, a = 50 m Depth, z = 100 mDensity contrast, $\Delta \rho = 2000 \text{ kg m}^{-3}$ Excess mass, $M_S = 10^9 \text{ kg}$

The variation in gz can be plotted on a profile and map

Grav (4) - benchmarking the program

▲□▶▲□▶▲□▶▲□▶ □ のへで