
Programming and Modelling
(week 38)

C. Thieulot

Institute of Earth Sciences

September 2017

feedback (1)

I a variable cannot have the same name as the program:

→ forbidden

I comments are placed before the instructions

I think about indentation

I when using cos, sin, etc ... do not declare them as real

I when declaring an array, its length must be a well defined
constant, i.e. a NUMBER

feedback (1)

I a variable cannot have the same name as the program:

→ forbidden

I comments are placed before the instructions

I think about indentation

I when using cos, sin, etc ... do not declare them as real

I when declaring an array, its length must be a well defined
constant, i.e. a NUMBER

feedback (1)

I a variable cannot have the same name as the program:

→ forbidden

I comments are placed before the instructions

I think about indentation

I when using cos, sin, etc ... do not declare them as real

I when declaring an array, its length must be a well defined
constant, i.e. a NUMBER

feedback (2)

I equally share the typing/coding

I arrays in do-loops, do not forget array(i)

I do not write the whole array inside a do-loop

I you must know by heart the exact syntax of an if statement

I when dealing with real numbers, do not forget 1., -7.

I use keyboard more (shortcuts), use mouse less

feedback (2)

I equally share the typing/coding

I arrays in do-loops, do not forget array(i)

I do not write the whole array inside a do-loop

I you must know by heart the exact syntax of an if statement

I when dealing with real numbers, do not forget 1., -7.

I use keyboard more (shortcuts), use mouse less

feedback (2)

I equally share the typing/coding

I arrays in do-loops, do not forget array(i)

I do not write the whole array inside a do-loop

I you must know by heart the exact syntax of an if statement

I when dealing with real numbers, do not forget 1., -7.

I use keyboard more (shortcuts), use mouse less

feedback (2)

I equally share the typing/coding

I arrays in do-loops, do not forget array(i)

I do not write the whole array inside a do-loop

I you must know by heart the exact syntax of an if statement

I when dealing with real numbers, do not forget 1., -7.

I use keyboard more (shortcuts), use mouse less

feedback (2)

I equally share the typing/coding

I arrays in do-loops, do not forget array(i)

I do not write the whole array inside a do-loop

I you must know by heart the exact syntax of an if statement

I when dealing with real numbers, do not forget 1., -7.

I use keyboard more (shortcuts), use mouse less

feedback (2)

I equally share the typing/coding

I arrays in do-loops, do not forget array(i)

I do not write the whole array inside a do-loop

I you must know by heart the exact syntax of an if statement

I when dealing with real numbers, do not forget 1., -7.

I use keyboard more (shortcuts), use mouse less

feedback (3)

Methodology

I more preparation at home:

”use trigonometric functions to compute center of circle”
”use formula to compute height of bullet”
⇒ @home : physics & math ; @univ: computer science

I think, then code

, then code

I write code progressively, compile and debug often !

feedback (3)

Methodology

I more preparation at home:
”use trigonometric functions to compute center of circle”

”use formula to compute height of bullet”
⇒ @home : physics & math ; @univ: computer science

I think, then code

, then code

I write code progressively, compile and debug often !

feedback (3)

Methodology

I more preparation at home:
”use trigonometric functions to compute center of circle”
”use formula to compute height of bullet”

⇒ @home : physics & math ; @univ: computer science

I think, then code

, then code

I write code progressively, compile and debug often !

feedback (3)

Methodology

I more preparation at home:
”use trigonometric functions to compute center of circle”
”use formula to compute height of bullet”
⇒ @home : physics & math ; @univ: computer science

I think, then code

, then code

I write code progressively, compile and debug often !

feedback (3)

Methodology

I more preparation at home:
”use trigonometric functions to compute center of circle”
”use formula to compute height of bullet”
⇒ @home : physics & math ; @univ: computer science

I think, then code

, then code

I write code progressively, compile and debug often !

feedback (3)

Methodology

I more preparation at home:
”use trigonometric functions to compute center of circle”
”use formula to compute height of bullet”
⇒ @home : physics & math ; @univ: computer science

I think, then code

, then code

I write code progressively, compile and debug often !

feedback (3)

Methodology

I more preparation at home:
”use trigonometric functions to compute center of circle”
”use formula to compute height of bullet”
⇒ @home : physics & math ; @univ: computer science

I think, then code

, then code

I write code progressively, compile and debug often !

function

I We have already seen intrinsic functions:
cos, exp, log10, sin, ...

I Users can also define their own functions, such as for instance:

I convert in celsius(temp): takes a real temperature and
returns its equivalent in Celsius degrees

I factorial(n): takes an integer number n and returns n
I compute average(n,array): takes a real array of size n and

returns its average

The factorial function (1)

Previously:

The factorial function (2)

the compute average function

Using functions

The following uses function factorial(n) to compute the
combinatorial coefficient

C (m, n) =
m!

n!(m − n)!

where m and n are actual arguments:
...

...

Cmn = factorial(m)/(factorial(n)*factorial(m-n))

...

Argument Association (1)

Argument Association (2)

Argument Association (3)

function vs subroutine

A function

I returns a value (or an array of values)

I has a type (integer, real, ...)

I is usually rather simple/short

I does not modify its arguments

I does not contain write statements

A subroutine

I performs one or many tasks

I does not have a type

I is invoked with call

I has arguments (or not) and can return them modified

function vs subroutine

A function

I returns a value (or an array of values)

I has a type (integer, real, ...)

I is usually rather simple/short

I does not modify its arguments

I does not contain write statements

A subroutine

I performs one or many tasks

I does not have a type

I is invoked with call

I has arguments (or not) and can return them modified

A very simple subroutine

> ./a.out

hello world !

Example (2)

> ./a.out

vect is 0.99755955 0.56682467 0.96591532

its norm is 1.4998026

Example (3)

2D geometry (1)

I define three random points in [0, 1]× [0, 1]

I compute the coordinates of the barycenter

I compute the area of the triangle they form with

A =
1

4

√
(a + b + c)(a + b − c)(a + c − b)(b + c − a)

I compute the shortest side length of the triangle

I compute the angle values with

cos θA =
AB · AC
|AB| |AC |

2D geometry (2)

2D geometry (2)

2D geometry (3)

cos θA =
AB · AC
|AB| |AC |

2D geometry (4)

