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Form of downwelling

I subduction

I delamination

http://www.mantleplumes.org



Form of downwelling (2)

Delamination:



Form of upwelling

I accretional plate margins (spreading centers/mid-ocean ridges)

I mantle plumes
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Mantle convection

I time dependent (highly time dependent / chaotic / turbulent)

I variable viscosity

I non-linear viscosity

I phase transformation

I compressibility

Compressibility is significant in mantle convection because the density of the
Earth’s mantle increases by 60% from the top to the bottom.
→ Compressible vs incompressible ?





Compressible mantle convection ...
how hard can it be?



Let’s have a look at the manual...



ρ = ρ(...)?



ρ = ρ(...)?









They include phase change as follows:



Their conclusions:



Gouverning equation

Commonly we find four types of equations used in the literature:

I Anelastic Liquid Approximation (ALA)

I Truncated Anelastic Liquid Approximation (TALA)

I Extended Boussinesq Approximation (EBA)

I Boussinesq Approximation (BA)



Scaling of the heat transport equation

ρcp
DT

dt
− αTρv · g = ∇ · (k∇T ) + s : ∇v

The usual scaling parameters for mantle convection are:
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which can be re-arranged:

ρ′c ′p
DT ′

dt′
− (α0g0h0/cp0)α′T ′ρ′v ′ · g ′ = ∇ · (k ′∇′T ′) +

µ0κ0

ρ0cp0∆Th2
0

s ′ : ∇′v ′



Scaling of the heat transport equation

One can then define the Dissipation number

Di =
α0g0h

cp0

and the Rayleigh number

Ra =
α0ρ0∆Tg0h

3

µ0κ0

with
Di

Ra
=

µ0κ0

ρ0cp0∆Th2
0

so that finally:

ρ′c ′p
DT ′

dt′
− Diα′T ′ρ′v ′ · g ′ = ∇ · (k ′∇′T ′) +

Di

Ra
s ′ : ∇′v ′

For the Earths mantle,

I the dissipation number is between 0.25 and 0.8.

I the Rayleigh number is about 107
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Looking at the literature

I Large body of work

I Models of increasing complexity

I developments go hand in hand with ever more powerful computers

I complicated physics/geochemistry → difficult numerics

































































—–









Rayleigh-Bénard convection

I Rayleigh-Bénard convection is a type of natural convection, occurring in a
plane horizontal layer of fluid heated from below, in which the fluid
develops a regular pattern of convection cells known as Bénard cells.

I Rayleigh-Bénard convection is one of the most commonly studied
convection phenomena because of its analytical and experimental
accessibility. The convection patterns are the most carefully examined
example of self-organizing nonlinear systems.

I Buoyancy, and hence gravity, is responsible for the appearance of
convection cells. The initial movement is the upwelling of lesser density
fluid from the heated bottom layer. This upwelling spontaneously
organizes into a regular pattern of cells.



Rayleigh number

In geophysics, the Rayleigh number is of fundamental importance: it indicates
the presence and strength of convection within a fluid body such as the Earth’s
mantle. The mantle is a solid that behaves as a fluid over geological time
scales.

When the Rayleigh number is below the critical value for that
fluid, heat transfer is primarily in the form of conduction; when it exceeds the
critical value, heat transfer is primarily in the form of convection.



A simple example of convection

Setup:

I I use my code ELEFANT

I box 4x3x1

I T=1 at the bottom, T=0 at the top

I free slip on all faces

I one incompressible material (BA)

I driven by buyoancy forces: ρ = ρ0(1− α(T − T0))

I k = 1, α = 10−5, T0 = 0, µ0 = 1, cp = 1, ρ0 = 1



Initial temperature perturbation:

Since

Ra =
α0ρ0∆Tg0h

3

µ0κ0

then
Ra = 10−5g0

I can choose Ra and it fixes my gravity vector magnitude g0



Sub-critical Rayleigh number case: Ra < Rac

→

→
Initial temperature perturbation relaxes → ’pure’ conduction.



Above-critical Rayleigh number case: Ra > Rac



Cylindrical benchmark



Setup

I I use my new code ELEFANTs

I 2D cylinder, Rin = 1.22, Rout = 2.22

I T=1 at the bottom, T=0 at the top

I free slip everywhere

I one incompressible material (BA)

I driven by buoyancy forces: ρ = ρ0(1− α(T − T0))

I k = 1, α = 10−5, T0 = 0, µ0 = 1, cp = 1, ρ0 = 1



Initial temperature perturbation:

T (r , θ) = Rout − r + 0.1 cos(4θ) sin((r − 1.22)π)



Ra = 102 Ra = 104

t = 0.000
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Ra = 104 @ t = 0.025
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