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Form of downwelling

» subduction

» delamination
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Form of downwelling (2)

Delamination:

Small-scale convection at the edge of the Colorado Plateau:
Implications for topography, magmatism, and evolution of
Proterozoic lithosphere

JW. van Wij", W.S. Baidrcge?,J. van Hunen,S. Goes", R. Aster", D.D. Coblentz", S.P. Grand", and J. NI"
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Form of upwelling

> accretional plate margins (spreading centers/mid-ocean ridges)

» mantle plumes



Form of upwelling

> accretional plate margins (spreading centers/mid-ocean ridges)
» mantle plumes
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Mantle convection

time dependent (highly time dependent / chaotic / turbulent)
variable viscosity

non-linear viscosity

vvvyYyy

phase transformation
» compressibility
Compressibility is significant in mantle convection because the density of the

Earth’s mantle increases by 60% from the top to the bottom.
— Compressible vs incompressible ?
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Compressible mantle convection ...

how hard can it be?
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ASPECT solves a system of equations in a d = 2- or d = 3-dimensional domain 2 that describes the motion
of a highly viscous fluid driven by differences in the gravitational force due to a density that depends on the
temperature. In the following, we largely follow the exposition of this material in Schubert, Turcotte and
Olson [STO01].

Specifically, we consider the following set of equations for velocity u, pressure p and temperature T', as
well as a set of advected quantities ¢; that we call compositional fields:

=V {Qn( u)fé(v-u)l)] +Vp=rpg in €, (1)
V. (pu) =0 in £, (2)
pCy (%—T-}—u-VT) -V kVT = pH
+2n (s(u) - %(V : u)l) : (5(11) — %(V - u)l) (3)
+al (u-Vp)
+ pTAS (8—X+H-VX) in €,
at
de; . X o
ot +u-Ve, =q; inQi=1...C
(4)

= L(Vu + VuT) is the symmetric gradient of the velocity (often called the strain rate).!

where 3
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Sensitivity of convection with an endothermic phase change to the
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Abstract. Recent convection calculations have demonstrated that an endothermic phase
transition can greatly decrease the vertical flow through the transition in a convecting
system, in some cases leading to a layered flow. Using reasonable estimates of both the
Rayleigh number and Clapeyron slope of the spinel to perovskite plus magnesiowiistite
phase change, these results suggest that the 670-km phase change has a strong effect on
mantle convection. This so-called “dynamic layering” phenomenon is further investigated
with a compressible finite element code using a two-dimensional, Cartesian geometry. We
find a weak sensitivity of the pattern of flow to the form of the equations, considering
Boussinesq, extended Boussinesq, and anelastic compressible forms of the governing
equations, assuming that the thermodynamic properties (thermal expansivity, heat capacity,
and latent heat) remain constant. The pattern of flow, however, depends strongly on the
initial conditions, boundary conditions and equation of state. We compare the simple
equation-of-state formulations used in previous work with a self-consistent equation of
state based on Debye and Birch-Murnaghan finite strain theory under a Mie-Griineisen
formulation. A thermal expansion coefficient that decreases monotonically with depth and
is unaffected by changes in phase or temperature greatly enhances dynamic layering. This
trend is reversed when the temperature, pressure, and phase dependence of thermodynamic
properties such as thermal expansivity, entropy, and heat capacity is introduced. At
moderate Rayleigh numbers, the pattern of the flow is strongly influenced by the pattern
of the initial condition (i.e., the location of upwellings and downwellings); however, it is
not sensitive to the thickness of the initial thermal boundary layers. The sensitivity of the
flow to the pattern of the initial condition can potentially bias mass fluxes, especially for
moderate Rayleigh number calculations.



Governing Equations

‘The equations derived from the principles of conservation
of mass, momentum, and energy which govern convection in
a very low Mach number, infinite Prandt] number fluid are
[Jarvis and McKenzie, 1980]

V. (pi) = 0 w

- Ory
0= -VP+pf + 5 @
pﬂ = V. (kVT) + pH + r.,g:" ®

where D/Dt is the material derivative and the variables are
defined in Table 1.

Using the thermodynamic relations
dg = TdS 4
and
as = Srar - Sar, ®
equation (3) can be rewritten as
bT DP
wCppy - oI5 =
T (KVT) + pH + n,;ﬂ. ®
zy

‘The effect of latent heat, gz, of a phase transition can
be introduced into equation (6) in two different ways. One
methed is to explicitly specify the variation in thermal ex-
pansivity and heat capacity due to the exchange of latent heat
in addition to any pressure, , or petrological vari-
ation [see Zhao er al,, 1992, and references therein]. Another
tack is to introduce the latent heat directly into equation (3),
which would then take the form

bT DP
Porpy ~ T

= V. (kVT) + pH + r‘,ﬂ + r%_ 0
w}mu&ehummhubunupmdedulngmﬂlmndy-
namic relation given above in equation (4). Thus Sy, is the
entropy change associated the latent heat g, In this case,

only variations in thermal expansivity and heat capacity due
to changes in pressure, temperature, or petrology are taken
into account. Because density is calculated independently of
thermal expansivity and heat capacity, equations (1) and (2)
are uneffected by this representation,

When solving equations (1) and (2), the absolute pressure
field is usually not determined. Instead, a reference density
(and thus pressure) profile is assumed a priori. This refer-
ence profile is fixed through out the calculation, Given this
assumption, our development will be altered in the following
way. Introducing the expansions

P=P4P [0}

P = p(F) + ¢(P,T), ©)
where the subscript r denotes the reference value of the prop-
erty it is associated with and the primed variables represent

from the ref state, the for the
conservation of momentum and energy become

0= VR = VP 4pd+ 77+ 5% (0
Ty

bT 8P,
Wy -aa-(— + m +#-VB,)

L+ pTDs" an

The value of P, is time lnd:peudenl and spatially variable
only in the vertical direction, i.e.,

= V. (kVT) + pH + r«

== =0 (12)
_ 0P, _

VE = 578 = pdl a3
Thus equations (10) and (11) become

- ory
VP = p§ + Bz, (14)



They include phase change as follows:

The effect of latent heat, gr, of a phase transition can
be introduced into equation (6) in two different ways. One
method is to explicitly specify the variation in thermal ex-
pansivity and heat capacity due to the exchange of latent heat
in addition to any pressure, temperature, or petrological vari-
ation [see Zhao et al., 1992, and references therein]. Another
tack is to introduce the latent heat directly into equation (3),

which would then take the form
DT DP
Por e ~ *Tor
Bv; DS
= V. (kVT) + pH + -r,,a + TW’ (@)

where the latent heat has been expanded using the thermody-
namic relation given above in equation (4). Thus Sz, is the
entropy change associated the latent heat g. In this case,

temperature gradient slightly, but a positive density gradient
is introduced. The effect of an endothermic phase change
in decreases the temperature locally, even though the den-
sity increases. Away from the thermal boundary layers, the
temperature profile should closely resemble that of a volume
element of fluid moving adiabatically within the cell.

Thermodynamic Properties
and Equation of State

The thermodynamlc properties (a, Cp, and S) and the

q of state of this phys-

ical system will be cast in two forms to determine the effect
of the approximations of the equation of state on convective
patterns, Most numerical studies of convection with a phase

change use a formulation similar that of Richter [1973] where
the progress function of the phase transition, , is given by

= L[ 4 tann (B2 = 0@ =Ty
2 d

where v is the Clapeyron slope of the phase transition, d
is half the transition width at constant temperature, and the
variable subscripted by t represents the value at the aver-
age depth of the phase transition. Under the BA and EBA
form of the governing equations, density at any point in the
convective system is then given by

mdp

p)

(22

p=p,,(1—aT+

where 8p is the change in density across the phase transition.



Their conclusions:

While previous studies have clearly demonstrated that an
endothermic phase change has a stronger effect on vertical
flow with increasing Rayleigh number, we show that the
initial conditions, boundary conditions, and equation of state
approximations also have important effects on the evolution
of a convecting system with an endothermic phase change at
a moderate Rayleigh number. In particular, (1) at Rayleigh
numbers of order 10°, the initial flow pattern imposed on
the system can persist for 30-40 transit times or more. (2)
Reflecting sidewall boundary conditions used in a Cartesian,
box-like system tend produce layered flows more easily than
those with flow-through conditions. (3) A general increase in
mass flux is seen as one increases the order of approximation
of the governing equations from the BA to the EBA to the
TALA. (4) Introducing temperature and phase variations in
thermal expansivity can lead to a significant decrease in the
impedance of flow across the phase boundary compared with
models that assume a monotonic decrease in this property
with depth. (5) Temperature variations in the latent heat of
the transition can increase the impedance of flow through the
boundary.



Gouverning equation

Commonly we find four types of equations used in the literature:
» Anelastic Liquid Approximation (ALA)
» Truncated Anelastic Liquid Approximation (TALA)
> Extended Boussinesq Approximation (EBA)
» Boussinesq Approximation (BA)



Scaling of the heat transport equation

pcp%—anv~g:V~(kVT)+s:Vv

The usual scaling parameters for mantle convection are:

h2
x=xh t=t'2 v=y2  T=TAT
Ko ho
K
p:P’MZgO p=pp  g=ga k=kKk  c=chcw

The equation then rewrites:

(PIPO)(CLCPO)S((%?/:)) —(dao)(T'AA T)(p'po)(v’%z

1 ’
= SV (KkoV/(T'AT)) + (s 225°) - (v'v'22)
hO hO hO
which can be re-arranged:
! HoKo

! DT ! !/ ! !
o ey O (aogoho/)o T'pv' g/ = V- (K'V'T') +

)-(g'go)

Po CpoA Thg

s vV



Scaling of the heat transport equation

One can then define the Dissipation number

Di = 2o&h
Cp0
and the Rayleigh number
3
Ra — aopoATgoh
HoKo
with
Di o Hoko

Ra ~ pocpoATH?
so that finally:

!
/

’
P CP dt’

T Do/ TV g =v - (KV'T)+ %s' A v



Scaling of the heat transport equation

One can then define the Dissipation number

Dj — 0goh
Cp0
and the Rayleigh number
3
Ra — aopoATgoh
Hoko
with .
Di poko

Ra ~ pocpoATH?
so that finally:
!

//DT -/ N / / / ! Di/ ’o7
P —Dia' T'pv - g :V-(kVT)—FEs Vv

For the Earths mantle,

» the dissipation number is between 0.25 and 0.8.
> the Rayleigh number is about 10’



Looking at the literature

» Large body of work
» Models of increasing complexity

» developments go hand in hand with ever more powerful computers

» complicated physics/geochemistry — difficult numerics
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Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase
and melting effects

Paul J. Tackley *

Institute of Geophysics, Department of Earth ETH Ziich, 5, 8092 Zurich, "

ARTICLE INFO ABSTRACT

Artice history: ‘The core-mantle boundary (CMB) - the interface between the silicate mantle and liquid iron alloy outer core
Received 22 June 2011 - is the most important boundary inside our planet, with processes occurring in the deep mantle above it
Accepted 3 October 2011 playing a major role in the evolution of both the core and the mantle. The last decade has seen an astonishing

Available online 10 October 2011

our knowledge of this region due to in data and techniques for
mapping both large- and small-scale structures, mineral physics discoveries such as post-perovskite and the

Kepwords: | on iron spin transition, and dynamical modelling. The deep mantle is increasingly revealed as a very complex re-
Core-mantle boundary gion ised by large variations in temp and ition, phase changes, melting (possibly at
o present and certainly in the past), and anisotropic structures. Here, some fundamentals of the relevant pro-
Post-perovskite cesses and uncertainties are reviewed in the context of long-term Earth evolution and how it has led to the
Ultra-low velocity zone observed present-day structures. Melting has been a dominant process in Earth's evolution. Several processes

involving melting, some of which operated soon after Earth's formation and some of which operated
throughout its history, have produced dense, iron rich material that has likely sunk to the deepest mantle
to be incorporated into a heterogeneous basal mélange (BAM) that is now evident seismically as two large
low-velocity regions under African and the Pacific, but was probably much larger in the past. This BAM modu-
lates core heat flux, plume formation and the separation of different slab components, and may contain various
il i lical location
has, however, probably changed through i to the inherent pes plate tectonics
and continental cycles.

©2011 Elsevier BV. Al rights reserved.




Geophysical Journal International

Geophys I 20101 130,75-57 ok 101111 1365-246X 200004413 1

A community benchmark for 2-D Cartesian compressible convection
in the Earth’s mantle
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Nicola Tosi** and Masanori C. Kameyama’
Tk Blackurg VA 24061 3
b k0. 054
et of Pt Uty of Coloran Sl 0 3030 US4
e i G s AN 3.0:

Coech Repuc
sttt of eologeal etencs, Feie Utversi, Berli, Germany
" Gemanics Rescarch Coner (GRC), Ehime Universit, Masama, Jopon

Acespted 300 Octabr . Received 3000 Octob S, nciginal foxn 2000 Ju 13

SUMMARY
Benchmark comparisons are an essenial 100l 10 verify the accuracy and validity of compu-
ational approaches to mantle convection. Six 2-D Cartesian compressible convection codes
are compared for steady-state constant and temperature-dependent viscosity cases as well
1= tmodependen xnsuot vy enes. 1 el we S gud sgnement bl
h
o Rt b v 15 s it s e 0 o3t e e
by approximately 1 per cent. Differences in discretization and use of finite volumes versus
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Key words: Numerical solutians; Numerical approximations and analysis: Equations of
state; Dynamies of lithosphere and manle

1 INTRODUCTION

As pressure increases theough the mante thre s @ orrespondis
ncrease in deasity due to self-compression. Ina vigorously con-
veeting mantle, the rate at which mechanical energy i converted
into heat 1. viscous disipation) s non-negligible and contributcs

density gradients that reduce the vigour of convection. In the non-
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number, Di. or the Earts

Howeer,
the potetial fecdback between theology snd adiabtic heating (cf
ucn et al 1987). While there has been extcasive benchs
incompressible
Teavis o af. 1990; van Keken et al 1997; Kogln ef al. 2005, van
al 2008), there has been no compressble comvection
b
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dimensional aversge heat flo), and the non-dimensional root-
mcan-squar (rms) velocty, volume averaged work and viscous

gt s o pevioly eng (.. King s 1955 Tn

disspaton,
different computer architctures that the coniributng groups em-
Joyed

&King 19

5 King 2009 I s <t of sty on e
dependent flow has not be examined. Often an adiabate gradicnt
5 3dded @ posterior to convection caleulations to incorporae the

2009 The Authars:
Josnal compilation © 009 RAS

it the codes and their desie to balance accuracy versus CPL
time. We ilustate the cffec of inreasing grid reslution on one
ypical problem with one code. Many of the codes have previousty
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2 EQUATIONS

While the general, dimensional equations for a compressible fluid
and various simplifying approximations have been presented else-
where (e.g. Turcotte et al. 1974; Jarvis & McKenzie 1980; Ita &
King 1994; Schubert et al. 2001; Leng & Zhong 2008), it is worth
repeating them here again for clarity. The derivation below follows
that in Schubert ef al. (2001). Mass conservation is given by

Bp o
o Vi =0, W

where p is the density and i is the velocity. The conservation of

momentum is given by,

Dpii -
= =_VP4V.t :, 2
Br + + pg )

where P is the pressure, g is the gravity, D/D¢ is the material

derivative, and t is the deviatoric stress tensor given by,

2
zzzne:n(v3+vﬁ’)—§qvvaﬁ,,, 3)

where 7 is the dynamic viscosity, ¢ is the strain-rate tensor, and &
is the Kroneker delta. Eq. (3) assumes that the bulk viscosity of the
fluid is zero. Finally, the equation of energy conservation is given
by,

DT DP
peppr — T o =
where T is the temperature, c,, is the heat capacity at constant pres-
sure, a is the coefficient of thermal expansion, k is the thermal
conductivity. / is the volumetric heat production and ¢ is the vis-
cous dissipation given by,

V. (kVT)+pH + ¢, )y

L e ©
E=T—.
FRET Gy,

¢ =

%)

In compressible convection, there is the additional required
assumption—the reference state,

T=T+T1 (©)

P=p+y @

p=pT.p)+0. ®)
where the overbarred quantities are time-independent and functions

of depth only. The reference pressure is given by the hydrostatic
approximation,

Vp = pg. ©)

Using the assumption that p’ < p, we can eliminate pressure
from the energy eq. (4). yielding

DT
ey =V KV + )+ pH +¢ — peyii - VT
— (T + T)pgw, 10

where it - g = —wg, where w is the upward component of velocity.
For the reference state (p. 7), we assume an adiabatic
Adams—Williamson equation of state (Birch 1952), where

:). T()*Tmfﬂp( “).an

where z is the depth coordinate (parallel to the dlreclmn of gravity),
y, is the reference value for the Griineisen parameter, 7, is the
surface temperature, and variables with the subscript r- are constant
values used in defining the reference state. From this reference state,
we note that VT = (0, —ag, T /cp, ), which along with dropping
terms with p’ and that ¢, = ¢, , allows us to further simplify the
energy eq. (10),

- ar
p(2) = prexp
Yol

”’F =V.[kV(I" + 1))+ pH + ¢ — pagwT’. (12)
The expansivity & is ;- and formally dependent on the reference
state. For the purposes of the benchmark we will assume thate = 1.



2.1 Equations under the anelastic liquid approximation

(ALA)

We non-dimensionalize the equations using the reference values
for density, p,, thermal expansivity, c,, temperature contrast, AT,
thermal conductivity, k,, heat capacity, c,, once again assuming
that ¢, & ¢, depth of the fluid layer, L and viscosity, »,. The
non-dimensionalization for velocity, u,, pressure, p, and time, ¢,
become

k. = 0ok, . _pcpl?
praali e

a3

prepl?’

The non-dimensionalization introduces four non-dimensional
numbers, the Prandtl number, Pr, the Mach number, M, the dis-
sipation number, Di and the Rayleigh number, Ra. If we assume
that the relative volume change due to temperature, o, AT, < 1,
M? Pr < 1 and Pr — oo, we arrive at the ALA.

Under the ALA, the conservation of mass becomes,

V. (pit) =0, (14)
the conservation of momentum becomes,
pc,g -
0= —Vp + V- 1+ Di2LE 1 RapagT'JAT,. (15)
K.y
where g is the unit vector in the direction of gravity, c, is the specific
heat at constant volume, j is now dimensionless [i.e. eq. (11) divided
by p,] and the Rayleigh number and dissipation number are given
by
o AT p?
-k,

o L
Ra = L (16)

cp

With the assumption of constant thermal conductivity, and using
the dimensionless reference states for p and T' given by

7 T
p=p.explz’ Dify,), and T = r; exp(z' Di), (17)

where z” is the dimensionless vertical coordinate. The conservation
of energy (12) under the ALA becomes,

_ DT I A | = Di 25
pcp—— + Dipawl" =V-T'+pH +¢—— + Di°T. (18)
Dt Ra
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The thermal profile in the Earth's Interior is influenced
factors. One of the least understood and studied

With the
exception of the work by Jarvis and McKeaie! very little has
beca done oa the effects of compressibility on mantle circalation.
1 is quite common for geophysiciss (o add the adisbatic tem-

with the mean-ficld method* that there exisis a strong coupling

and the thermodynamic co
Here we point oat the |-|m
incorporating the effects

explicitly the ways in which compression may raise the interior
mantle temperature and illustrate how this effect can, in turn, be
parameters associated

We have cmployed the mean-field equations for studying
. which shouid yield important informa-
physi wolved. Although
corimation 1o the full e o cocvective Cqutions,
increasingly been used by geo-
ists t0 obtain preliminary ideas about various convection
raiems, Fanging from variableiscosty’ 10 double diflsive
convestion”.
We have derved the single-mode, meinfeld equations
approprise or an ces convection' with ¥
able viscosty in the limi of nfnie Prandl number. Within
e proseat am’nunmhnn viscosity depends on horizontally
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prescribing the background density profile. We have
nondimenionalized wih t0 the whole manile, dept
d (d=3,000km) and have chosen & z-axis pointing downward.
The relevant steady.state equations may be writien as the
momentum equation.
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The thermal profile in the Earth’s interior is influenced by many
factors. One of the least understood and studied processes is that
resulting from adiabatic heating and viscous dissipation. With the

exception of the work by Jarvis and McKenzie' very little has

been done on the eﬂ'ects of compressibility on mnntle circnlatlon.
S quite comm T geophysici a

peralnre gnrllent a pa:termn to temperature pmﬁles derlved from

i Recently it has been shown®
with the mesn-ﬁeld method*® that there exists a strong coupling
between the rheological such as the activation volume,
and the thermod: nmic constnnts g ing adiabaﬂc heatin 3

bou

]
2
s
e
E.
5

explicitly the W:ys in which compression may raise the interior
mantle tempenture and illustrate how this effect can, in turn, be
used for constraining some of the intrinsic parameters associated
with the equation of state in the mantle.

the ion of state can be esti d with greater

‘We conclude that the coup]mg between vanable VlSCOSI!y and

ion of state in dissip: heating is y an impor-

tant mechanism in mantle convection. The fundamental concept
mﬁm

linked to each other by virtue of nonlinear thermomechanical

couplings must be strongly emphasized as a consequence of

these hndings. To explore further the implications of this
phenomenon for the Earth’s thermal behaviour, we need to
corroborate these results with the full equations and also with
d thermal exp and thermal
conducuvlly, which would have important implications for the
D' layer. With the next gencrauon of supercomputers, the
spaual ion required to d this process

in two or three dimensions is well attainable.

8511200 and NASA grant NAG 5-770.



. Flid Mech. (1992), ol 239, p. 083719 683
Printed in Great Briain

Three-dimensional convection of an infinite-
Prandtl-number compressible fluid in a basally
heated spherical shell
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A numerical investigation is made of the effects of compressibility on three-
dimensional thermal convection in  basally heated, highly viscous fluid spherical
shell with an inner to outer radius ratio of approximately 0.55, characteristic of the
Earth's whole mantle. Compressibility is implemented with the anclastic approxi-
mation_and a hydrostatic adisbatic reference state whose bulkk modulus is &
liear function of pasemrs, The comprea ussinesq
ompressibilities typical of the Earth’s whole mantle. Compressibility has
Ttte oo o the apatal suoture of steady convection when the superadiabatic
temperature drop across the shell AT}, is comparable to a characteristic adiabatic
temperature. When AT, is approximately an order of magaitude smaller than the
disbatio temperture, compremlbilty I signifant. For ul the o Bousivesq
the regular p ivu patteans that exist ot largs AT, break downs
¢ small AT, into highly rroguler pattorma; as AT, dectcases convection boromes
penetrative in the upper portion of the shell and is strongly time dependent at
Rayleigh numbers only ten times the critical Rayleigh number, {Ra),. Viscous
heating in the compressible solutions is concentrated around the upwelling plumes
greatest near the top and bottom of the shell. Solutions with regular patterns
(and large AT,,) remain steady up to fairly high Rayleigh numbers (100(Ra)ey), while
solutions with irregular convective patterns are time dependent at similar Rayleigh
numbers. Compressibility affects the pattern evolution of the irregular solutions,
producing fewer upwelling plumes with increasing compressibility.

1. Introduction

Convective flow in the Earth's mantle has been the subject of extensive research
because of its relevance to plate tectonics and the structure and evolution of the
terrestrial planets (Oxburgh & Turcotte 1978; Schubert 1979 ; Schubert, Stevenson
& Stevenson & Cassen 1980; Olson, Silver & Carlson 1990). Evidence for convection
exists in the directly measurable motions of the tectonic plates at the Earth's surface
m.,.. & .vmd.n 1978, 1987; Kroger el al. 1987), and in I.h: correlations of

infer tle
!mum.lny anoﬁnphy with tactonie fentures (Runcorn 1967; Driewonski 1084

numerical investigation is made of the effects of compressibility on three-

dimonional thermal couvestion in & basally hested, highly viscons uid sphercal
with an inner to outer radius ratio of approximatel characteristic of the

Tarth's whole mantle. Compressibility is implemonted LSS danses approxi-

mation and a hydrostatio adisbatic reference state whose bulk modulus is a

lincer fuaution of gromurs. The compromsbiitien studied range from Bousinesq
w com lbllmeq typical of the Earth's whole mantle. Compre t

o hen the super ic
little effect on the spatial structure of steady convection when the superaciabatic




GEOPHYSICAL RESEARCH LETTERS, VOL. 16, NO. 7, PAGES 633-636, JULY 1989

COMPRESSIBLE CONVECTION IN THE EARTH’S MANTLE:
A COMPARISON OF DIFFERENT APPROACHES

Volker Steinbach, Ulrich Hansen, Adolf Ebel

Institut f. Geophysik und Meterologie, Universitit zu Kéln, F.R. Germany

It has been argued that aK,, is almost constant in the lower
mantle (e.g. Anderson, 1979), but recent high pressure - high
temperature measurements (Boehler et al., 1989) give some ev-
idence that this quantity d with pressure. A ding to
these data, we used the relations a~p ~6, K, ~p*, leading to the

Abstmct Numencal models of mantle convection using the

q and anelastic-liquid approxi-

mation are compared. For steady state solutions there is good
quantitative agreement between the results if they are scaled ina

proper way. Time-d d q and anelas- . . .

tic-liquid flows show only qualitative agreement, the main dif- (dimensionless) functions:

ference bemga i of ti C ibility induces 12 _3 Y

an asymmetry in the structure of upper and lnwerboundary lay- p=f"a=f"y=f7f=(1+20D¢v)2). (3)

ers that cannot be observed in Boussinesq fluids. 3
where subscripts 0 denote zero pressure values.
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EFFECTS OF STRONGLY TEMPERATURE-DEPENDENT VISCOSITY ON

MODELS OF MANTLE CONVECTION.

Paul J Tackley
‘Seismological Laboratory, California Institute of Technology

Absiract, Numerical simulations of thermal convection in
a wide (8xBx1) Cartesian box heated from below with
temperature-dependent viscosity contrasts of 1000, and
Rayleigh number 10° show that boundary conditions and

aspect ratio have an enormous effect on the preferred flow
ith rigid upper -
flow with small (di 1.5) cells is obtained, consistent

expesiments and previous numerical results.
However, with the arguably more realistic stress-free
. the flow

small boxes (aspect ratio up to 1.5) temperature-dependent
viscoity favors upwelling plumes an dowawellng shets.

conditions in a 4xdx1 Bﬂl Irl'-b viscosity contrasts o[ 30.

Pechaps the most was obiained by Weinsiein

and Christensen [1991], who, in !belmu 4xdx]1 box, found

that simply changing the upper boundary condition to

s free resuled i @ much longer wavelength pttern
upwelling

forming 2 single square cel of aspect raio 8, with one uge
Jlindrical i The
addition of stress-dependence to the theology weakens the
stiff upper boundary layer, resulting in smaller cells, though
sill with upwelling sheets and downwelling plumes.
Introduction

Increasingly realistic numerical models of
mmmum (3-D) thermal planetary
‘mantles have been published in recent years, with Rayleigh
nmumppmmn.muhm-ndvmmm
complexiis such as spherical geometry. depth-depeadent

properties,

1989; !allcblnd!r ctal., 1992; Tackley etal., 1993 |.

However, by far the largest a) me:mlllnn | these

calculations is the assumption of viscosity

wmlyd'i&'deldmt.'ibvmvimm rn-lh
ongly

the farmatlon of rigid sarface plates, and slmlly

‘modulating the characteristics of other

mchuplnmuﬁmuwmmy Thas, it is

umwry experiments have given some insights into

ble viscosity convection, but are limited in their

applicability to the Earth by the use of n.m boundary
conditions, since the r, aapun: on the

that stress-free boundary conditions are appropriate. White

[:mldemnhedmmh:mp-mrnb prefered for rigid

boundary conditions, Rayleigh numbers above about 25000

and lage viscosity variations.
Numerical work has mainly focussed on steady-state
solutions in small boxes. Ogawa et al. [1992) modeled

In order s mantle, it s i

wnﬂmwﬂhhwmuymn.mdmlm

Earth’s mantle. Here, solutions with these characteristics are
presented.

Model

In order to isolate the eﬂm of variable viscosity, the
Boussinesq approximation is with all coefficies
constant except viscosity The infime Prandl number

(D%x). mantle depd- (D), and superadiabatic temperature
drop (AT), are as follows:

Vy=0 m

V3 Vp = RayoTz @
Ty =Nl @)
TBt= VT - V44T) @

where 1. p. . . and 1 as velosty, dynamic pressurey
temperature (varying from O af the top boundary o 1 at the

base), deviatoric stress and dynamic viscosity, mymv-ly,;
is 4 unit vector in the vertical direction, Rayleigh
number Ray is defined using the viscosity at T=0.5 as
follows:

Rayz = pgaATDmuax 0]

‘where p=density, g=gravitational acceleration, ct=thermal

expansivity and k=thermal diffusivity. Viscosity is described
by an Arrhenius law:

TiiewlT) = exp (13.8155(1CT+1)-1/1.5)  (6)

viscosity contrasts of up 1o 10°, identifying
by upwelling giving »between 100 and 0.1, with 1(0.5)= 10
sheets beneath a sagnant lid, and the regime. For
«characterized by up- and down-1 ‘with sheet-like el
extensions. Christensen and Harder [1991] determined that in ThaonNew = Tlew € G m
Thtr=2 (e # T tien'Y ! ®

Copyright 1993 by the American Geophysical Union.

‘where n is the power-law index, ¢ is the strain rate and g




Fig.1 residual higher (red) or lower (blue) than the

horizontally-averaged valu, by £0.15 except whe siated: &) (op ef) Case 1, b 1op right) Case 2, ) (botom
left) Case 3, red contour is +0.1, ) (bottom right) Case 4, contours are +0.1

Conclusions

These results show clearly the importance of stress-free
boundary conditions and wide domains in understanding
mantle ion with viscosity.
Very large cells are formed, with upwelling sheets and
downwelling plumes, in contrast to the small-wavelength
spoke pattern obtained with rigid boundary conditions.
Although deep upwelling below mid-ocean ridges is
suggested, the robustness of these patterns to internal heating,
depth-dependent properties, spherical geometry and higher
Rayleigh number needs to be established.
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Effects of strongly variable viscosity on three-dimensional
compressible convection in planetary mantles

Paul J. Tackley!

Seismological Laboratory, California Institute of Technology, Pasadena

Abstract A systematic investigation into the eﬂects of temperature dependent viscosity on
‘mantle has been performed by means of

numencal simulations in Cartesian geometry using a finite volume multigrid code, with a
factor of 1000-2500 viscosity variation, Rayleigh numbers ranging from 105-107, and stress-
free upper and lower boundaries. Considerable differences in model behavior are found
depending on the details of rheology, heating mode, compressibility, and boundary
conditions. Parameter choices were guided by realistic Earth models. In Boussinesq, basally
heated cases with viscosity solely dependent on and st
boundaries, very long wavelength flows (~25,000 km, assuming the depth corresponds to
mantle thickness) with cold plumes and hot upwelling sheets result, in contrast to the
upwelling plumes and downwelling sheets found in small domains, illustrating the
importance of simulating wide domains. The addition of depth dependence results in small
cells and reverses the planform, causing hot plumes and cold sheets. The planform of

dent viscosity is due o vertical variations in
viscosity rasu]lmg from the C i with iat
depth-dependent properties, results in a tendency for broad upwelling plumes and narrow
downwelling sheets, with large aspect ratio celis. Perhaps the greatest modulation effect
occurs in mlcmal]y heated compressible cases, in which the short- wavc]sngm pattern of

d plumes observed in

completely changes into a very long wavelength pattern of duwnwollmg sheets (spaced up
to 24,000 km apart) with time-dependent plumelike instabilities. These results are
particularly interesting, since the basal heat flow in the Earth's mantle is usually thought to
be very low, e.g., 5-20% of total. The effects of viscous dissipation and adiabatic heating
play only a minor role in the overall heat budget for constant-viscosity cases, an
observation which is not much affected by the Rayleigh number. However, viscous
dissipation becomes important in the stiff upper boundary layer when viscosity is
temperature dependent. This effect is caused by the very high stresses occurring in this stiff
lid, typically 2 orders of magnitude higher than the stresses in the interior of the domain for
the viscosity contrast modeled here. The temperature in the interior of convective cells is
highly sensitive to the material properties, with temperature dependent viscosity and depth-
dependent thermal conductivity strongly increasing the internal temperature, and depth-
dependent viscosity strongly decreasing it. The sensitivity of the observed flow pattern to
these various complexities clearly illustrates the i of




Abstract. A systematic investigation into the cffects of temperature dependent viscosity on
three-dimensional compressible mantle convection has been performed by means of
numerical simulations in Cartesian geometry using a finite volume multigrid code, with a
factor of 1000-2500 viscosity variation, Rayleigh numbers ranging from 105-107, and stress-
free upper and lower boundaries. Considerable differences in model behavior are found
depending on the details of rheology, heating mode, compressibility, and boundary
conditions. Parameter choices were guided by realistic Earth models. In Boussinesq, basall

y depel
boundaries, very long wavelength flows (~25,000 km, assuming the depth corresponds to
mantle thickness) with cold plumes and hot upwelling sheets result, in contrast to the
upwelling plumes and downwelling sheets found in small domains, illustrating the
importance of simulating wide domains. The addition of depth dependence results in small
cells and reverses the planform, causing hot plumes and cold sheets. The planform of
temperature dependent viscosity convection is due predominantly to vertical variations in
viscosity resulting from the temperature dependence. Compressibility, with associated
depth-dependent properties, results in a tendency for broad upwelling plumes and narrow
downwelling sheets, with large aspect ratio cells. Perhaps the greatest modulation effect
occurs in internally heated compressible cases, in which the short-wavelength pattern of
time-dependent cold plumes commonly observed in constant-viscosity calculations
completely changes into a very long wavelength pattern of downwelling sheets (spaced up
to 24,000 km apart) with time-dependent plumelike instabilities. These results are
particularly interesting, since the basal heat flow in the Earth's mantle is usually thought to
be very low, e.g., 5-20% of total. The effects of viscous dissipation and adiabatic heating
play only a minor role in the overall heat budget for constant-viscosity cases, an
observation which is not much affected by the Rayleigh number. However, viscous
dissipation becomes important in the stiff upper boundary layer when viscosity is
temperature dependent. This effect is caused by the very high stresses occurring in this stiff
lid, typically 2 orders of magnitude higher than the stresses in the interior of the domain for
the viscosity contrast modeled here. The temperature in the interior of convective cells is
highly sensitive to the material properties, with temperature dependent viscosity and depth-
dependent thermal conductivity strongly increasing the internal temperature, and depth-
dependent viscosity strongly decreasing it. The sensitivity of the observed flow pattern to
these various complexities clearly illustrates the importance of performing compressible,
variable-viscosity mantle convection calculations with rheological and thermodynamic
properties matching as closely as possible those of the Earth.




Figure 2. Convective patems for Boussinesq, basally heated cases, Plotted are isosurfaces of residual
temperature (i.c., temperature relative to horizontally averaged value). Light contours indicate upwellings,
showing where the temperature is 0.1 hotter than the horizontal average: dark contours indicate downwellings,
showing where the temperature is 0.1 colder than the horional average 427 Constant viscosity, Ra=10° (B1);
() (), periodic sides, Ra=10° (B2); (¢) n(T), reflecting sides, Ra=10° (B3); (d)  (7), aspect ratio 4,
Ri=108 (B, dispaging the same solucion as B2: &) n(2), Rae103 (BS m NT.2), Ra=10% (B6); (2) M(T),
Ra=100 (B7); and (h) (T.2), Ra=10% (B). For further detils, see Tabl




Conclusions

These results show that a considerable range of convective
styles and characteristic horizontal wavelengths is possible,
depending on the exact details of rheology, compressibility,
heating mode, and Rayleigh number. All of these have a
significant effect on the flow, indicating the importance of
including them into numerical models, and matching the

Earth's parameter space as closely as possibl

Results obtained under the Boussinesq approximation show
clearly the importance of modeling wide domains. With
rtheology being dependent solely on temperature and stress-
free boundaries, very wide cells are formed (periodicity 8)
‘with upwelling sheets and downwelling plumes, in contrast to
the small-wavelength spoke pattern obtained with rigid
boundaries [White, 1988; Tackley, 1993). Christensen and
Harder [1991] previously concluded that upwelling sheets are
unlikely to occur in temperature dependent viscosity
convection. However, these results indicate that at sufficiently
large aspect ratio and with stress-free boundaries, they are the
preferred solution. Adding depth dependence completely
reverses these characteristics, resulting in small cells with

through a self-regulation mechanism first described by Tozer
[1972], and thus the effect of various parameters on the
internal mantle temperature may be lower than that predicted
by these simulations. The interior temperature profile (away
from boundary layers) is always close to adiabatic, and
usually somewhat subadiabatic.

The convective vigor, as measured by rms velocity, is
diminished in regions of high viscosity. However, in these
calculations, the stiff upper boundary layer still participates in
the flow; a larger viscosity contrast would be necessary to
cause a rigid lid. The stress distribution resembles the
viscosity distribution, with very high stress levels in the upper

boundary layer.

Examination of the energy balance reveals that viscous
dissipation and adiabatic heating are only minor contributors
to the heat budget for constant-viscosity compressible mantle
convection, with advection and diffusion playing the dominant
role. Although the magnitude of viscous dissipation and
adiabatic heating terms increases with Rayleigh number,
advection and diffusion terms increase by a similar or larger
factor, and thus viscous dissipation and adiabatic heating are
still relatively unimportant. However, when temperature

upwelling plumes and do ing sheets. I the
Rayleigh number by an order of magnitude does not appear to
fundamentally change the convective pattern, resulting in
narrower features and greater time dependence, and in some
cases, smaller cell sizes. To first order, changes in planform
arising from temperature dependent viscosity are due mainly
to the mean depth dependence introduced by temperature
dependence.

viscosity is included, viscous dissipation becomes
important in the stiff upper boundary layer due to the high
stresses.

Compressibility, with the associated depth-dependent
material properties, results in fairly large cells for basally
heated models, and a preference for large upwelling plumes
and narrow downwelling sheets. However, when the viscosity
is dependent solely on temperature, downwelling plumes and
linear upwellings are observed, in accordance with the

equivalent Boussinesq solutions.
Perhaps the greatest modulation effect of viscosity
variations occurs in internally heated, compressible cases. It is

In these results, realistic plates and subduction are not
obtained. Temperature dependent viscosity by itself does not
result in plate-like behavior. The downwellings are two-sided,
and a concentration of stress occurs where they leave the
upper boundary layer. In order for plates to occur, an
additional mechanism is needed to create weak zones in the
Stff lid, such as nonlinear powerlaw rheology [Cserepes,
1982; Christensen, 1984; Weinstein and Qlson, 1992], or a
"stick-slip" rheology [Bercovici, 1993, 1995]. A priority in
future work must be to examine the influences of these
rheologies in self-consistent three-dimensional models. Other
priorities include the effects of phase transitions, spherical
geometry, compositional variations, and continents. Other
possible rheological complexities not considered here include




Earth and Planetary Science Letters 401 (2014) 172-182

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/eps!

The effect of plate motion history on the longevity of deep mantle @Cmsmk
heterogeneities

Abigail L. Bull**, Mathew Domeier?, Trond H. Torsvik %2¢

2 Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0316 Oslo, Norway
" Geodynamics, Geological Survey of Norway, 7491 Trondheim, Norway
 School of Geosciences, Witwatersrand University, WITS 2050 johannesburg, South Africa



V.ou=0
where u is the velocity vector. The momentum equation is
—VP +V - (né) = (RaT — Rbe)f

where # is the radial unit vector, P is the dynamic pressure, 7 is
the viscosity, ¢ is the strain rate tensor, T is the temperature, c is
the composition and Ra is the thermal Raleigh number defined as

_ apgATH

=

where « is the thermal expansivity, o is the density, g is the ac-
celeration due to gravity, AT is the temperature drop across the
mantle, h is the mantle thickness and « is the thermal diffusivity.

We employ a Rayleigh number of 2 x 108.
The chemical Rayleigh number, Rb, is defined as

Ra

_ Apgh®

=

where Ap is the density contrast between chemical components.
The buoyancy ratio, B, which is the ratio of chemical to thermal
buoyancy is defined as

Rb

_Rb_ Ap
"~ Ra paAT

The energy equation is defined as

Z—Z+(u~v)r=vlr+ﬂ

where t is time and H is the non-dimensional internal heating
rate.

We employ a temperature- and depth-dependent rheology of
the non-dimensional form:

(T, 2) = nr(2) exp[A(0.5 - T)]

where 7,(z) =1 for z < 663 km and 7,(z) = 0.1225z — 51.2 for
663 km < z <2867 km. n and z are the non-dimensional vis-
cosity and dimensional depth respectively. This is similar to the
viscosity structure used in McNamara and Zhong (2005), Bull et al.
(2009) and Zhang et al. (2010) and leads to a weak upper man-
tle, a 30x viscosity step at the boundary between the upper and
lower mantle, and a 10x linear increase with depth to the base of
the mantle. The non-dimensional activation coefficient is chosen
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Effect of mantle compressibility on the thermal and flow
structures of the subduction zones
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1] The heal generated by viscous dissipation is consistently evaluaied using a 2-D compressible
subduction model with variations of mantle rheology (constant as well as pressure and temperature
dependent viscosity), dip, age, and velocity of the subducting slab. For comparison, we alsa conduct 2-D
incompressible subduction calculations with the same conditions and parameiers used in the compressible
formulation. The effect of compressibilty on the thermal and flow strustures of the subduction zenes is
relatively small and concentrated along the base of the mantle wedge, with temperature differences <100°C
and differences in kinematic energy of the mantle wedge <1% befween compressible and incompre:
models. Mantle theology has a stronger cffect on thermal and flow structures than mantle compressibili
as well as the variations of dip, age, and velocity of the subducting slab. The heat from viscous dissipation
in the compressible model increases.the slab temperatures over the incompressible model (<70°C), as o
result of additional conduction across the slab surfice (constant viscosity) and thinning of the thermal
boundary layer caused by viscosity reduction (pressure- and temperaturc-dependent viscosity).
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1. Introduction

2] Subduction zones are the sites where active arc
voleanoes, orogenic processes, and destructive

quakes from shallow to decp arc observed.
The mantle wedge between the slab and overlying
lithospher is cxpected 1o be cooler than that of the
ambient uj mantle due 10 a cold subducting
slab. However, both geochemistry of arc magmas
and surface heat flow data in the arc and backarc
seem 10 require high temperatures in the mantle

wedge [Currie et al., 2004; Currie and Hyndman,
2006; Furukawa and Uyeda, 1989; Kelemen ct al.,
2003; Peacock and Hyndman, 1999; Peacock,
2003; Peacock et al., 2005; Ulmer, 2001). T
reconcile these seemingly contradietory observa-
tions, previous studies have suggested induced hot
mantle from deep mantle to the comer of the
mantle wedge by viscous coupling between the
subducting siab and mantle wedge or small-scale
mantle convection below the backare [Currie ef al.,
2004; Kelemen et al., 2003; Peacock et al., 2005;
van Keken et al., 2002]. Although the heat gener.
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Figure 1. Schematic diagram of the subduction zone model using the dip of 45 degrees for the straight slab and the
subducting slab velocity of 5 cm/a. The subducting slab and upper mantle below the slab are subducted together. For
details about initial and boundary conditions, rheology, and a decoupling condition, sce text.

[12] In this study, we formulate a 2-D numerical
subduction model consisting of a prescribed sub-
ducting slab, a 50 km thick overlying rigid lid
(lithosphere) and the mantle wedge between the
slab and lid (Figure 1). Because the main purpose
of this study is to evaluate the effect of the mantle
compressibility on the thermal and flow structures
of the subduction zones, geometry of the subduc-
tion model here is arbitrary and simplified. Similar
numerical models have been used in previous
studies [e.g., Currie et al., 2004; Davies and
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Figure 7. Log-scaled viscosity ratio of diffusion to dislocation creep in the mantle wedge for the () BA and
(b) ALA experiments using composite viscasity. Dislocation creep becomes the predominant mantle theology in the
region where strain ratc is high, especially, by the partially coupled zone. In the ALA experiments using composite
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5. Conclusion

[4] We conduct numerical subduction experiments
using incompressible (BA) and compressible
(ALA) fluid models to evaluate the effect of
compressibility on the thermal and flow structures
of the subduction zones. Variations of dip, age, and
velocity of the subducting slab are considered with
constant viscosity and pressure- and temperature-
dependent viscosity. In general, there are only
small differences between the results from the
BA and ALA experiments. Unlike compressibility,
rtheology is a more important factor affecting the
thermal and flow structures of the subduction
zones; we observe lower surface heat flow in the
arc in the BA and ALA experiments using constant
viscosity and higher surface heat flow, faster slab
heating, and a very thick thermal lithosphere below
the backarc in the BA and ALA experiments using
p and dent viscosity. We
find that compressibility affects the slab tempera-
ture through a feed back with the heat generated by
viscous dissipation. In the ALA experiments using
consmnt wscos1ty, the heat generated by viscous

the slab faster




Physics af the Earth and Planetary Iteriors 216 (2013) 74-50

Contents lists avallable at SciVerse ScianceDiract

Physics of the Earth and Planetary Interiors

journal

www.elsevier.

Geoid and topography of Earth-like planets: A comparison between
compressible and incompressible models for different rheologies

Meysam Shahraki*, Harro Schmeling

Fom

o Roam 1226, 11, .

ARTICLE INFO ABSTRACT

At b

e 1, 60434 Frankfrt M, Germany

1 shell model:

Recen 1 2y 2012

e sl fom 13 November 012
4 31 December 2012

Avaibteonine 10 jnaary 2013

Eeited by Mark Jellinek.

properties is presented. T

o i di
e conveeton with constant snd varisbs viscosiy and constant 2ad depeh-dependent thermodynanic

tion. In the case of varizble viscosity. an Arthenius law with strongly temperature and pressure depen-
dent viscosity is considered. We showr that assuming compressible convection with depth-dependent
ndulat

Keywords
Earise planets
Geoid anarmaly
Dynamic topography
Compressisie
Arthenius chcology

1. Introduction

Sinee almost five decades mantle convection has been studied
by numerical models. Because of the limitations impased by finite
computing capacity. several simplifying assumptions have com-
monly been made in most mantle convecion studie. One of the
most important of su
Lion. Tis approdimarion i Vaid I the mn»em..ra scale height
(ie. the depth over which temperature increases by a factor of
* due to adiabatic compression) is much greater than the convec-
tion depth (Mihaljan, 1862; Spiegel and Veranis, 1960} However, 2
temperature scale height in the Earth's mantle s at best only
slightly greater than the mantle depth. Hence, the Boussinesa
approximation could mask some wery important stratification
and compressibility effects that influence both the spatial and tem-
poral structure of the convection {Clatzmaier, 1988)

since the whole mantle thickness of Venus, Earth and Mars are
between 45% and 50% of mean planetary radius (Stevenson et .,
1983), global models of mantle convection require a spherical
geometry (Bercovici et al, 1992) The pioneer series study of man-

convection in spherical geometry has been done by abub (!g
Zebib et al, 1985; Zebib and Schubert, 1979 Zebibet al.
bib et al. 1978, 1980, Following these studies, a number Pt

* Corresponsing suthor. Tel +d5 (0)63 79840115 ax: +46 (0)69 79840131
il afrecses: hanvak@geophyskuni-ankfurtde,  meysam shahrade
‘gmailcom (M. Shabeali)

constant thermodynamic properties is physically incansistent and may lead to spurious results for the
‘gewid and canvection pattern. In addition,
Fieologies on the power lzw folation that connects the Nussele umber (o the Rayleigh number. We dis-
couer that the pawer law index of the Nu-Ra relationship is controlled by the rheology, independent of
‘which approximation is used. Instead, the bound of this relation is cantrolled by 2 combination of differ-
ent approximation and theclogy.

. we examine the impact of compressibiliy s well 2s Gifferent

© 2013 Elsevier BY. All fights reserved.

studies in spherical geometry focusing on effects such as phase
changes, variable viscosity, etc. have been published (see e.g. Schu-
et al. (2001l more references). However i alostll ealy
models the Boussinesg appteximaton bas been wsed 1o simplly
the equations governing fluid motion in order to facil
ical computation. Different challenges can be encounterd fon 1
interested in the geoid, because the density is the primary variable
for the geoid. Therefore, it is important 1o go beyond the Bous-
sinesa approximation for the geoid computation.

Indeed. the importance of compressible convection has been
discovered in two-dimensional Cartesian geometry for iso-viscous

nvection (Jarvis and McKenzie, 1950) and for variable viscosity
(Quaren et al. 1986; Yuen et al, 1987, without looking at the
geoid except for & study by Scheneling (1989) who investigated
the geoid variation in two-dimensional variable viscosity com-
pressible convection. However, Cartesian geoid is not helpful i o
be compared to the real Earth, and spherical models are necessary.
Moreover, he computed the geoid undulations by neglecting
depth-dependence of the thermodynamic parameters, although
the variations of the bulk modulus, thermal expansion and thermal
conductivity are known to be large across the Earth's mantle (e
Anderson, 1987),

Recently. three-dimensional compressivie comvection vith
d a

tten-
tion {eg. Iackley, 1986, znnu: e such studies did not focus on
the geoid cases, espy

properties.



1. Introduction

Since almost five decades mantle convection has been studied
by numerical models. Because of the limitations imposed by finite
computing capacity, several simplifying assumptions have com-
monly been made in most mantle convection studies. One of the
most important of such assumptions is the Boussinesq approxima-
tion. This approximation is valid if the temperature scale height
(i.e. the depth over which temperature increases by a factor of
“e” due to adiabatic compression) is much greater than the convec-
tion depth (Mihaljan, 1962; Spiegel and Veronis, 1960). However, a
temperature scale height in the Earth’s mantle is at best only
slightly greater than the mantle depth. Hence, the Boussinesq
approximation could mask some very important stratification
and compressibility effects that influence both the spatial and tem-
poral structure of the convection (Glatzmaier, 1988).

Since the whole mantle thickness of Venus, Earth and Mars are
between 45% and 50% of mean planetary radius (Stevenson et al.,
1983), global models of mantle convection require a spherical
geometry (Bercovici et al., 1992). The pioneer series study of man-
tle convection in spherical geometry has been done by Zebib (e.g.
Zebib et al., 1985; Zebib and Schubert, 1979; Zebib et al., 1983: Ze-
bib et al., 1978, 1980). Following these studies, a number of other

studies in spherical geometry focusing on effects such as phase
changes, variable viscosity, etc. have been published (see e.g. Schu-
bert et al. (2001) for more references). However, in almost all early
models the Boussinesq approximation has been used to simplify
the equations governing fluid motion in order to facilitate numer-
ical computation. Different challenges can be encountered if one is
interested in the geoid, because the density is the primary variable
for the geoid. Therefore, it is important to go beyond the Bous-
sinesq approximation for the geoid computation.

Indeed, the importance of compressible convection has been
discovered in two-dimensional Cartesian geometry for iso-viscous
convection (Jarvis and McKenzie, 1980) and for variable viscosity
(Quareni et al., 1986; Yuen et al., 1987), without looking at the
geoid except for a study by Schmeling (1989) who investigated
the geoid variation in two-dimensional variable viscosity com-
pressible convection. However, Cartesian geoid is not helpful if to
be compared to the real Earth, and spherical models are necessary.
Moreover, he computed the geoid undulations by neglecting
depth-dependence of the thermodynamic parameters, although
the variations of the bulk modulus, thermal expansion and thermal
conductivity are known to be large across the Earth’s mantle (e.g.
Anderson, 1987).

Recently, three-dimensional compressible convection with
depth-dependent thermodynamic properties attracted great atten-
tion (e.g. Tackley, 1996, 2008). Yet, such studies did not focus on



2.1. Reference state

The reference state is that of an adiabatic, homogenous fluid
under hydrostatic pressure. [n this reference state the density
distribution, pr, can be obtained as the solution of the Adams-
Williamson equation,
ldp._ _pg__og

= 8
p, dr Kag 7 @

where Kq is the adiabatic incompressibility and, 7 is the Griineisen
parameter which is a measure of the anharmonic character of the
equation of the state (Balachandar et al., 1993) defined as:

_ Kas
Py
According to the condition Df%; oc p-2 (Leitch et al,, 1992), Zhang and
Yuen (1996) simplified this equation and derived:
2Dy (ro— 1))
P =Po {1 t T}
where Dy, = apgd/c, is the surface dissipation number and ro, pgy

are outer radius of the shell and density at the top surface, respec-
tively (see Table 1).

()]

(10)



The pressure and temperature-dependence of the thermal con-
ductivity (for mantle materials) is not well understood. However,
in the first order of a theoretical estimation of Anderson (1987)
based on lattice dynamics, we considered a thermal conductivity,
which varies with depth according to

3
k=k ("') : 1
Loy (11)
in which ko is the surface value of the thermal conductivity (see
Table 1).

This equation implies an increase of k by a factor of 2.5 to the
core mantle boundary (CMB) (see Fig. 1). Recently several experi-
mental and theoretical simulations have been conducted which
suggest a strong variation in k (e.g. Hofmeister, 2008). However,
no conclusive agreement has been reached. Therefore, we consider
the first order of approximation in our simulations. In addition, the
gravitational acceleration, g, is taken to be constant, since the
acceleration due to gravity does not differ from 10.1 ms-2 by more
than 6% throughout the entire mantle (Dziewonski and Anderson,
1981). Besides, Q, the internal heating rate is also assumed to be
zero. Of course, radioactive sources in the mantle contribute to
the heat production over a period of Myrs, and this heating rate
undoubtedly varies with time, but for the purposes of present
study, it is an additional complexity that would be distracting;
therefore, it will be neglected.

Reference state properties

0.5 1 15 2 2.5
Value

Fig. 1. Variation of dimensionless reference state with parameters value listed in
Table 1 The non-dimensional x-axis is density (blue), thermal expansion (red),
thermal conductivity (green) and diffusivity (magenta) with non-dimensional
radius on y-axis. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)



We consider the thermal expansivity decreasing with increas-
ing density (Chopelas and Boehler, 1992) according to

«=ap (%)75, 12)

o.

This implies a decrease in thermal expansion by a factor of five from
the top to the CMB (Fig. 1). We neglect the temperature dependence
of thermal expansivity, although it may be important for heat trans-
port and velocities in the upper mantle (Ghias and Jarvis, 2008; Sch-
meling et al., 2003).

Reference state properties

FDensity
Expansi

nductivity
Diffusivit

0.5 1 15 2 2.5
Value

Fig. 1. Variation of dimensionless reference state with parameters value listed in
Table 1 The non-dimensional x-axis is density (blue), thermal expansion (red),
thermal conductivity (green) and diffusivity (magenta) with non-dimensional
radius on y-axis. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)



However, if we aim to obtain a complete understanding of the
mantle convection process, viscosity variations are essential com-
ponents which have to be taken with care. Therefore, we attempt
to get close to a realistic temperature—pressure-dependent viscos-
ity by taking the Arrhenius law according to the new formulation
introduced by Shahraki and Schmeling (2012), in which they have
tried to adjust the activation energy, E, the activation volume, V,,
and pre-exponential constant, A, by taking them as unknowns in
a system of equations and then use these values in the Newtonian
viscosity as known constants.

_ E+Bz
1-sem (579

Here, T is the absolute temperature and z is the depth. In addi-
tion, Ris the gas constant and B is an abbreviation which is equal to
B = pgV,, where p and g are the density and the gravity accelera-
tion, respectively.

It should be noted that, in general, our viscosity profiles are in
agreement with viscosity profiles based on observations and inver-
sions (e.g. Steinberger and Calderwood, 2006). This means that
there is a highly viscous layer at the top surface underlain by a
layer whose viscosity decreases considerably towards the 660 dis-
continuity (Fig. 2). Below, the viscosity increases towards the CMB
so that there is a hump in the lower mantle which has been in-
ferred in previous studies of geoid and post-glacial rebound inver-
sions (e.g. Forte and Mitrovica, 2001; Mitrovica and Forte, 2004;
Ricard and Wuming, 1991; Soldati et al., 2009). Furthermore, in

(13)



2.4. Modeling strategy

The main purpose of this work is to point out the differences be-
tween two different common approximations in the geodynamic
community. The first group of the models is incompressible with
the Extended Boussinesq approximation (EB), and the second
group is compressible with the Anelastic Liquid Approximation
assuming depth-dependent thermodynamics properties (CM).
However, to better analyze those two approximations and to ana-
lyze which behavior stems from compressibility and which from
the depth dependence of the other parameters, a third group is also
taken into consideration to show its validity with respect to what
we presume are the more realistic or consistent approaches (EB
and CM). Basically, this group is the same as the second group, ex-
cept that the thermodynamic properties are assumed to be con-
stant (CMC).

In our view, the CMC group is not fully thermodynamically con-
sistent because on one hand compression is allowed to generate
depth dependent density, but on the other hand, these density
variations are not allowed to generate appropriate variations in
other thermodynamic properties such as thermal expansivity
or conductivity. Thus, using compressible formulations with
depth-dependent density implicitly requires also thermodynamic
properties be depth-dependent. Therefore, modeling compressible
approaches with constant thermodynamic properties are, strictly
speaking, physically inconsistent. Here we include one set of
models with this inconsistent assumption to explore the
consequences.
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5. Conclusion

(a) A systematic study comparing different approaches of com-
pressibility in the spherical shell axi-symmetric convection
for different Arrhenius viscosity laws shows that only in
the unrealistic case of zero activation energy the different
compressibility modes result in comparable convection
and geoid patterns. In all other rheological cases, large dif-
ferences have been obtained, stressing the important role
of consistent compressible thermodynamic properties for
mantle convection.

(b) When considering compressible convection in the Earth-like
planets it is essential not only to include variable density but
also the density dependence of other thermodynamic prop-
erties. Considering only variable density may lead to incon-
sistent results for the geoid and dynamic topography as well
as the convection pattern.

(c) The indirect effect of variable density on thermodynamic
properties is more important in modifying spherical shell
convection and geoid than the variable density alone.

(d) Compared to the EB and ALA models with no depth-depen-
dent thermodynamic parameters fully compressible convec-
tion seems to avoid rising plumes at the poles in axi-
symmetric convection.

(e) As the Rayleigh number increases from the first critical value
to the second critical value (representing the transition to
time dependent convection), in the case of the tempera-
ture-pressure-dependent viscosity, the Nu-Ra relationship
is strongly dependent on the aspect ratio of the convection
cell while in the iso-viscous case, a weak dependence
observed.

(f) The efficiency of the Arrhenius temperature-dependent vis-
cosity as well as temperature-pressure-dependent viscosity
in the mantle to remove the heat is weakly dependent on the
Ra number, and it is almost independent of using different
compressibility approximations.
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Underpinning tectonic reconstructions of the western
Mediterranean region with dynamic slab evolution
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We model the evolution of the western Mediterranean region with the finite element modeling package
SEPRAN (http://ta.twi.tudelft.nl/sepran/sepran.html). We solve the following three dimensionless equations
(used symbols are given in Table 1) applying the extended Boussinesq approximation for a medium including
solid state phase transitions [Christensen and Yuen, 1984]:

Mass conservation of an incompressible viscous fluid,

ov; =0, m
the Stokes equation describing force balance,
—8P + Oy = (Rar - Zkakrk) g @
and the heat conservation equation:
8T

5T Di Rbi . dr, _ i
¢ VAT = 88T = DI(T + T0)givi = D e DT +To) gt = 0. ®



1300 km

1650 km

Figure 4. The top view of the modeled region showing the paleogeo-
graphy at ~35 Ma [after van Hinsbergen et al.,, 2014]. Brown regions are
modeled as continental lithosphere, blue regions as oceanic litho-
sphere, and green regions denote continental margins. Location of
active or incipient subduction at ~35 Ma will be indicated in Figure 6.
The arrows denote the average absolute plate motion of Iberia and
Africa over the past 35Ma determined from Doubrovine et al. [2012].
From the reconstruction of van Hinsbergen et al. [2014] we estimate
about 140 km of oceanic or iti i between Iberi
Africa, and about 440 km between African and the Balearic margin. The
average width of continental margins is 70 km. The star shows the
position of vertical viscosity profiles in Figure 6.
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[1) UHP rocks commonly form and exhume during the transition from oceanic subduction to continental
collision. Their exhumation in subduction channels depends on the balance between down-channel shear
traction and up-channel buoyancy. Thermal-meehanical upper-mantle-seale numerical models are used to
investigate how variations in material properties of the subducting continental margin affect this balancq
Changes in shear traction leading to crustal decoupling/detachment are investigated by varying the onset of
strain weakening, thermal parameters, and convergence velocity. Variations in buoyancy force are
investigated by modifying subducted material density and volume. The model results are interpreted in
terms of the exhumation number E, which expresses the role of the pressure gradient, channe] thickness,
effective viscosity, and subduction velocity. Peak metamorphic conditions, exhumation velocity, and
timing of exhumation are temporally and spatially variable and are sensitive to the evolution of E. The
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required for UHP exhumation
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1. Introduction Their presence attests to burial of continental and

(rarely) oceanic crustal material to, and subsequent
[2] Crustal rocks metamorphosed to ulira-high-  exhumation from, depths of at least 100 km. Geo-
pressure (UHP) conditions have been described  ¢hronological data from recent collision zones indi-
from many Phanerozoic continental collision zones,  ¢ate that high-pressure metamorphism took place
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where o is the stress tensor, x; are the spatial
coordinates, P is pressure, p is density, g is the
itati ion, v, are of
velocity, 3 is specific heat, T is temperature, ¢ is
time, K is thermal conductivity, 4 is radioactive
heat production per unit volume, and « is the
volumetric thermal expansion coefficient. The last
term in the heat balance equation is the temperature
correction for adiabatic heating when material
moves vertically at velocity v,. For model T(+SH)
(section 4), equation (3) also includes the effect of
strain heating, oy Ov/Ox;, assuming that all
dissipated mechanical energy is converted to heat.

2.5. Density Changes Associated With
Metamorphic Phase Changes

[22] Nominal initial densities of crust and mantle
materials (Table 1a) are for reference temperatures
close to the average initial temperatures for each
of these layers and represent thermally stable
average continental and oceanic lithosphere. In
all experiments, crustal materials undergo changes
in density at pressure and temperature conditions
corresponding to metamorphic phase changes.
Densities and the metamorphic conditions at
which they change are estimated from published
data [Hﬂcker 1996; Walsh and Hacker, 2004],
with densities ing complete

[5] For materials that change density during a
phase change we modify the incompressibility
equation (2) to mass conservation, dp/dt =
—(pv;)/x; to account for the associated volume
change and its effect on the buoyancy and velocity
field. The volume change is calculated numerically
as a modification to the implementation of incom-

transformation to eclogite-facies phases. The den-
sities of lower continental and oceanic crust
(Table 1a) change across the eclogite field bound-
ary; the higher density of ocean-crust eclogite
reflects its mafic composition, whereas the inter-
mediate lower continental crust has a lower eclo-
gite-facies density. The density of quartz-bearing
upper/mid continental crust increases across both
the eclogite and coesite-eclogite facies boundaries
(Table 1a). We test the sensitivity of exhumation
mechanism and rate to changes in density of the
subducted upper/mid-continental crust (Table 2).

by applying additional normal, pres-
sum/dllatmlonal forces to finite elements at the
time they are subject to phase-related density
changes. The value of the excess pressure AP =
AplB.p, where f, is the viscous bulk modulus of
the nearly incompressible material, and Ap/p is the
fractional change in density corresponding to the
phase change. The excess pressure compresses
material locally and only during the model time
steps when the phase changes occur, thereby en-
suring mass conservation. The fractional volume
change accompanying a phase change is small in
these models and its effect on the velocity field is



Rayleigh-Bénard convection

» Rayleigh-Bénard convection is a type of natural convection, occurring in a
plane horizontal layer of fluid heated from below, in which the fluid
develops a regular pattern of convection cells known as Bénard cells.
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» Rayleigh-Bénard convection is one of the most commonly studied
convection phenomena because of its analytical and experimental
accessibility. The convection patterns are the most carefully examined
example of self-organizing nonlinear systems.

» Buoyancy, and hence gravity, is responsible for the appearance of
convection cells. The initial movement is the upwelling of lesser density
fluid from the heated bottom layer. This upwelling spontaneously
organizes into a regular pattern of cells.



Rayleigh number

In geophysics, the Rayleigh number is of fundamental importance: it indicates
the presence and strength of convection within a fluid body such as the Earth’'s
mantle. The mantle is a solid that behaves as a fluid over geological time
scales.

When the Rayleigh number is below the critical value for that
fluid, heat transfer is primarily in the form of conduction; when it exceeds the
critical value, heat transfer is primarily in the form of convection.



A simple example of convection

Setup:
» | use my code ELEFANT
box 4x3x1
T=1 at the bottom, T=0 at the top
free slip on all faces
one incompressible material (BA)
driven by buyoancy forces: p = po(1 — (T — To))
k=1,a=10"° To=0, uo=1,¢=1,p=1

vVvYvyVvyVyvyy



Initial temperature perturbation:
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Sub-critical Rayleigh number case: Ra < Rac
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Initial temperature perturbation relaxes — 'pure’ conduction.



Above-critical Rayleigh number case: Ra > Rac
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Cylindrical benchmark

A community benchmark for compressible mantle convection in a
two—dimensional cylindrical domain

D. R. Davies, S. C. Kramer, C. R. Wilson, N. Tosi, J. Besserer, C. Hiittig

Early numerical models of mantle convection were commonly confined to two— and three dimensional Cartesian do-
mains, of limited extent. The actual geometry of mantle convection, however, is a three-dimensional spherical shell, with
concentrie spherical upper and lower houndaries. With improvements in numerical methods and increasing computational
resourees, global three --? it spherical mantle convection mnd&ls are b ing more common (e.g.|B: dner|

- . Hma.ever the use of this geometry for calculmmns at a realistic convectwe vigour remains expensive. As a
equence, simplifying geometries are often used, including the axisym: | shell {e.g.[S:

van Keken and Yuen| [1995) and the two-dimensional eylinder (e.g.

|van Keken| 2001} Nakagawa and Tackley| QUDSb. Whilst there has bes enchmarking of Cartesian codes,

for incompressible (Blankenbach et al, g [1930] )
compressible (King et al. 2010} convection, in both two- and three dimensions, there has been no benchmark in two
dimensional eylindrical geometry, which is our goal. As with previous eommunity benchmarks, we focus on a comparison
between derived quantities of the temperature and velocity fields from & number of carefully designed test cases, includ-
ing the Nusselt number (Nu) and root-mean-square (RMS) velocity (Vrars). Both incompressible and compressible
convection are examined, following & structure very similar to that of King et al] The computetional efficiency
of each code is not compared, given the differing computational architectures available to each group.

The outline of this document is as follows: in Section [T} we present the equations and different approximations
governing mantle convection. Benchmark cases are presented in Section[2] al ide the diagnostics used for ing
codes. Pearticipants are asked to report all dingnostics, where possible. Codes contributing towards this benchmark are
i (please provide a brief description if your code is not currently listed), with prehmma.ry results
i) Fluidity (Davies et al.| 2011{[Kramer et al.}[2012); (ii) TerraFERMA (Wilson et al.}[2013); (iii) Gaia
and (iv) Cheaps (Besserer et al.||2011] Besserer|[2 presented online at: [https://docs. google.

con/spreadshest/cccTkey=0AruSwfAD-LtHdHF j UHNscWFpR1FWcExye jkzHO1 fTUEAusp=sharing#gid=0 Access to this
document will be granted, as requested. A discussion of results will be undertaken when all contributing codes have
submitted final diagnostic values.




Setup
» | use my new code ELEFANTs
2D cylinder, Rin = 1.22, Royr = 2.22
T=1 at the bottom, T=0 at the top
free slip everywhere
one incompressible material (BA)
driven by buoyancy forces: p = po(1 — (T — To))
k=1,a=10" To=0,u=1¢=1p=1
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Initial temperature perturbation:

T(r,0) = Rout — r + 0.1 cos(40) sin((r — 1.22)7)
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Ra=10* @ t = 0.025




Ra = 102
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