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The number of stars next to each project indicates its (estimated) level of difficulty. You can score very high marks
with any of the 4 projects: simply choose the one that is in adequation with your motivation and how advanced of a
programmer you think you are.

Please let me know by email which project you have chosen.

Corner flow subduction (*)

• In this experiment the velocity is prescribed in geometrically simple subducting and overriding plates, while the
velocity in the mantle is computed by means of an analytical solution coined ’corner flow velocity’. Details are
to be found in G.K. Batchelor, An introduction to fluid dynamics. Cambridge University Press, 1967.

• Write a subroutine which prescribes the velocity in a lithospheric sized domain

• Use this velocity to drive the system in time (choose the appropriate values for the coefficients in the heat
transport equation)

• prescribe a constant temperature value at the top, and fix the temperature on both sides, but only in the plates
(along lengths l1 and l2. Choose an appropriate plate temperature model.

• Run the model over millions of years with different velocities.

• Measure the depth of the isotherm 800◦ as a function of time.

• Is steady state ever reached ?

If all goes well, you should be able to recover similar results:

a) b)
3D setup with prescribed velocity. b) example of temperature field evolution

2D Stokes flow and iterative solvers (**)

• Download, install and study the SimpleFEM code from www.cedricthieulot.net/simplefem.html

• The benchmark present in the downloaded 2D version will not be used here. You will therefore model the following
setup: the box is a cuboid of size Lx = 500km, Ly = 500km. Either no-slip or free slip boundary conditions are
to be prescribed. It contains a fluid M (mantle) with density ρM = 3300kg/m3 and viscosity µM = 1022Pa.s
which fills the domain. Additionally, you will implement a sphere (S) of higher density ρS = 3350kg/m3 and
with a viscosity µS ∈ [1022−26]Pa.s placed at the center C(xc, yc) of the domain. Its radius is 100km. The
functions b1 and b2 should not be used anymore and the two commented lines above where b1 and b2 are called
should be used instead. In order to implement the density and viscosity for the mantle and the sphere, you
will create two new functions my mu and my rho which take the coordinates of a point as argument and take the
corresponding value at that location. Set the penalty parameter to λ = 1028Pa.s and do not change it.
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• Document how the maximum (downward) velocity in the domain varies with a) resolution, b) viscosity contrast
(µ? = µS/µM ), type of boundary conditions.

• Use the Jacobi Solver that you wrote to solve the system. What do you observe ?

• Implement a Gauss-Seidel iterative solver and test it first on a simple system of which the solution is known
(think of one of the FD or FE codes you wrote in class). Use the algorithm presented in
https://en.wikipedia.org/wiki/Gauss-Seidel method

Use it to solve the Stokes system. What do you observe ?

• Same question as above with a Conjugate Gradient solver. Simply use the algorithm presented in
https://en.wikipedia.org/wiki/Conjugate gradient method

Note: the CG solver is applicable to symmetric matrices.

• bonus: Create a matrix P (further called the preconditioner) which is zero except on its diagonal where Pi,i =
1/

√
Ai,i. The original linear system to solve A · V = b can we left multiplied by P to obtain:

P ·A · P · P−1 · V = P · b

Defining
A′ = PAP b′ = P ·A V ′ = P−1 · V

one can solve the new new system A′V ′ = b′ for V ′ and then recover V = P · V ′. Try all three solvers again
on this system, and for those which converge (if any), compare the number of iterations that the iterative solver
needs to reach the required tolerance with and without the preconditioner.

3D FEM Stokes solver (***)

• Download, install and study the SimpleFEM code from www.cedricthieulot.net/simplefem.html

• Rewrite the code so that it can now solve the Stokes equation in 3D.
tip: be very careful about the icon array. Draw on paper a 5x4x3 element grid, and label the nodes and elements.
Make sure that your code retrieves this numbering for each element.

• The benchmark present in the downloaded 2D version cannot be extended to 3D. You will therefore model the
following setup: The box is a cuboid of size Lx = 500km, Ly = 500km, Lz = 1000km. Either no-slip or free slip
boundary conditions are to be prescribed. It contains a fluid M (mantle) with density ρM = 3300kg/m3 and
viscosity µM = 1022Pa.s which fills the domain. Additionally, you will implement a sphere (S) of higher density
ρS = 3350kg/m3 and with a viscosity µS ∈ [1022−26]Pa.s placed at the center C(xc, yc, zc) of the domain. Its
radius is 100km. The functions b1 and b2 should not be used anymore and the two commented lines above where
b1 and b2 are called should be used instead. In order to implement the density and viscosity for the mantle
and the sphere, you will create two new functions my mu and my rho which take the coordinates of a point as
argument and take the corresponding value at that location. Set the penalty parameter to λ = 1028Pa.s and do
not change it.

• Bonus: Run the same experiment with the 2D version of the code. Comment on the difference of the maximum
of the velocity magnitude in the domain between 2D and 3D.

Full 3D thermomechanically coupled FEM code (****)

• Download, install and study the source code Lab1 from www.cedricthieulot.net/mantledynamics.html

• This code solves alternatively the Stokes and the heat transport equation. It is in fact the SimpleFEM code
with temperature calculations added to it, and formulated as a function of the Rayleigh number.

• Rewrite/adapt this code to 3D and look at the questions in Instructions Lab 1. Given the time left and the time
taken to run the code, try to address these questions.

2



Iterative solvers for the heat transport equation (***)

For both 2D FDM and FEM pure-diffusion codes, use/implement the following solvers:

• direct solver

• Jacobi solver

• Gauss-Seidel solver (https://en.wikipedia.org/wiki/Gauss-Seidel method )

• Conjugate Gradient solver (https://en.wikipedia.org/wiki/Conjugate gradient method)

• SSOR solver https://en.wikipedia.org/wiki/Successive over-relaxation)

• GMRES solver (https://en.wikipedia.org/wiki/Generalized minimal residual method) (BONUS)

Please report the number of iterations that each solver requires to achieve a given tolerance. Explore the effect of
resolution.
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