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Numerical integration
Introduction

I The basic problem in numerical integration is to compute an
approximate solution to a definite integral∫ b

a
f (x)dx

to a given degree of accuracy.

I If f (x) is a smooth function, and the domain of integration is
bounded, there are many methods for approximating the integral
to the desired precision.
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Numerical integration
Reasons

There are several reasons for carrying out numerical integration.
I The integrand f(x) may be known only at certain points, such as

obtained by sampling. Some embedded systems and other
computer applications may need numerical integration for this
reason.

I A formula for the integrand may be known, but it may be difficult
or impossible to find an antiderivative that is an elementary
function. An example of such an integrand is f (x) = exp(−x2),
the antiderivative of which (the error function, times a constant)
cannot be written in elementary form.

I It may be possible to find an antiderivative symbolically, but it
may be easier to compute a numerical approximation than to
compute the antiderivative. That may be the case if the
antiderivative is given as an infinite series or product, or if its
evaluation requires a special function that is not available.
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Numerical integration
in 1D

The simplest method of this type is to let the interpolating function be
a constant function (a polynomial of degree zero) that passes through
the point ((a+b)/2, f((a+b)/2)).
This is called the midpoint rule or rectangle rule.∫ b

a
f (x)dx ' (b − a)f (

a + b
2

)
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Numerical integration
in 1D

If we divide the interval into 4 subintervals:∫ 1

0
f (x)dx

=

∫ 0.25

0
f (x)dx +

∫ 0.5

0.25
f (x)dx +

∫ 0.75

0.5
f (x)dx +

∫ 1

0.75
f (x)dx

' 0.25f (0.125) + 0.25f (0.375) + 0.25f (0.625) + 0.25f (0.875)
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Numerical integration
in 1D

The interpolating function may be a straight line (an affine function,
i.e. a polynomial of degree 1) passing through the points (a, f (a)) and
(b, f (b)).
This is called the trapezoidal rule.∫ b

a
f (x)dx ' (b − a)

f (a) + f (b)

2
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Numerical integration
in 1D

If we divide the interval into 4 subintervals:∫ 1

0
f (x)dx

=

∫ 0.25

0
f (x)dx +

∫ 0.5

0.25
f (x)dx +

∫ 0.75

0.5
f (x)dx +

∫ 1

0.75
f (x)dx

= 0.25
f (0) + f (0.25)

2
+ 0.25

f (0.25) + f (0.5)

2
+

0.25
f (0.5) + f (0.75)

2
+ 0.25

f (0.75) + f (1)

2

= 0.25
(

f (0)

2
+ f (0.25) + f (0.5) + f (0.75) +

f (1)

2

)
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Numerical integration

For either one of these rules, we can make a more accurate
approximation by breaking up the interval [a,b] into some number n
of subintervals, computing an approximation for each subinterval,
then adding up all the results.
The midpoint rule can be stated as∫ b

a
f (x)dx ' h

n−1∑
k=0

f (a + (k + 1/2)h) h = (b − a)/n

where the subintervals are [kh, (k + 1)h], k = 0,1, . . . ,n − 1.
The composite trapezoidal rule can be stated as∫ b

a
f (x)dx ' h

(
f (a)

2
+

n−1∑
k=1

f (a + kh) +
f (b)

2

)
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Numerical integration
in 1D

Exercise 1: Write a program which uses the midpoint rule to compute
(subdivide the interval in n subintervals)

I =

∫ π/2

0
f (x) dx f (x) = x and f (x) = cos(x)

Compute and plot the (absolute) error between the measured In and
the analytical value I as a function of the subinterval size h.

Exercise 2: Same exercise as above but with the trapezoidal rule.

Which method is the most accurate?

Bonus: Repeat Ex.1 with I =
∫ 3

1

∫ 4
2 (x2y3 + xy + 1)dxdy
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Numerical integration

I Interpolation with polynomials evaluated at equally spaced points
in [a,b] yields the Newton–Cotes formulas, of which the
rectangle rule and the trapezoidal rule are examples.

I If we allow the intervals between interpolation points to vary, we
find another group of quadrature formulas, such as the Gaussian
quadrature formulas.

I A Gaussian quadrature rule is typically more accurate than a
Newton–Cotes rule, which requires the same number of function
evaluations, if the integrand is smooth (i.e., if it is sufficiently
differentiable).
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Numerical integration
Gaussian quadrature

I In numerical analysis, a quadrature rule is an approximation of
the definite integral of a function, usually stated as a weighted
sum of function values at specified points within the domain of
integration.

I An n−point Gaussian quadrature rule, named after Carl Friedrich
Gauss, is a quadrature rule constructed to yield an exact result
for polynomials of degree 2n − 1 or less by a suitable choice of
the points xi and weights wi for i = 1, . . . ,n.

I The domain of integration for such a rule is conventionally taken
as [−1,1], so the rule is stated as∫ +1

−1
f (x)dx =

n∑
iq=1

wiq f (xiq )
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Numerical integration
Gaussian quadrature

I In numerical analysis, a quadrature rule is an approximation of
the definite integral of a function, usually stated as a weighted
sum of function values at specified points within the domain of
integration.

I An n−point Gaussian quadrature rule, named after Carl Friedrich
Gauss, is a quadrature rule constructed to yield an exact result
for polynomials of degree 2n − 1 or less by a suitable choice of
the points xi and weights wi for i = 1, . . . ,n.

I The domain of integration for such a rule is conventionally taken
as [−1,1], so the rule is stated as∫ +1

−1
f (x)dx =

n∑
iq=1

wiq f (xiq )

C. Thieulot | Numerical Quadrature



11

Numerical integration
Gaussian quadrature

Johann Carl Friedrich Gauss (30 April 1777 – 23 February 1855)
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Numerical integration
Gaussian quadrature

I Gaussian quadrature will only produce good results if the
function f (x) is well approximated by a polynomial function within
the range [−1,1].

I The method is not, for example, suitable for functions with
singularities.
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Numerical integration
Gaussian quadrature

Gauss-Legendre points and their weights

xi is the i-th root of the Legendre polynomial Pn(x)
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Numerical integration
Gaussian quadrature

Comparison between 2-point Gaussian and trapezoidal quadrature.

Blue line: polynomial y(x) = 7x3 − 8x2 − 3x + 3 with
+1∫
−1

y(x)dx = 2/3

The trapezoidal rule returns the integral of the orange dashed line,
equal to y(−1) + y(1) = −10
The 2-point Gaussian quadrature rule returns the integral of the black
dashed curve, equal to y(−

√
1/3) + y(

√
1/3) = 2/3

Such a result is exact, since the green region has the same area as
the sum of the red regions.
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Numerical integration
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Numerical integration
Gaussian quadrature

I An integral over [a,b] must be changed into an integral over
[−1,1] before applying the Gaussian quadrature rule.

I This change of interval can be done in the following way:

r =
2

b − a
(x − a)− 1 x =

b − a
2

(1 + r) + a dx =
b − a

2
dr

∫ b

a
f (x)dx =

b − a
2

∫ +1

−1
f (r)dr ' b − a

2

n∑
iq=1

wiq f (riq )
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Numerical integration
Gaussian quadrature, example 1

For simplicity, a = −1, b = +1.
Let us take f (x) = π

I =

∫ +1

−1
f (x)dx = π

∫ +1

−1
dx = 2π

Igq =

∫ +1

−1
f (x)dx =

nq∑
iq=1

wiq f (xiq ) =

nq∑
iq=1

wiqπ = π

nq∑
iq=1

wiq = 2π

since
∑

iq wiq = 2 !
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Numerical integration
Gaussian quadrature, example 2

Let us now take f (x) = mx + p

I =

∫ +1

−1
f (x)dx =

∫ +1

−1
(mx + p)dx =

[
1
2

mx2 + px + C
]+1

−1
= 2p

Igq =

∫ +1

−1
f (x)dx =

nq∑
iq=1

wiq f (xiq ) =

nq∑
iq=1

wiq (mxiq + p)

= m
nq∑

iq=1

wiq xiq︸ ︷︷ ︸
=0

+p
nq∑

iq=1

wiq︸ ︷︷ ︸
=2

= 2p

since the quadrature points are symmetric w.r.t. to zero on the x-axis.
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Numerical integration
Gaussian quadrature, example 3

Let us take f (x) = x2

I =

∫ +1

−1
f (x)dx =

∫ +1

−1
x2dx =

[
1
3

x3
]+1

−1
=

2
3

Igq =

∫ +1

−1
f (x)dx =

nq∑
iq=1

wiq f (xiq )=

nq∑
iq=1

wiq x2
iq

I nq = 1: x (1)
iq = 0, wiq = 2. Igq = 0

I nq = 2: x (1)
q = −1/

√
3, x (2)

q = 1/
√

3, w (1)
q = w (2)

q = 1. Igq = 2
3

I It also works for all nq > 2 !
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Numerical integration
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Numerical integration
Gaussian quadrature, example
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Numerical integration
Gaussian quadrature, example

(to copy-paste)

program integration
implicit none
integer, parameter:: nq=2
real(8),dimension(nq),parameter:: xq=(/-1.d0/sqrt(3.d0),+1.d0/sqrt(3.d0)/)
real(8),dimension(nq),parameter:: wq=(/1.d0,1.d0/)
real(8) I
integer iq
I=0.d0
do iq=1,nq
I=I+wq(iq)*fct(xq(iq))
end do
write(*,*) ’I=’,I
contains
function fct(x)
implicit none
real(8) x,fct
fct=x**2
end function
end program
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Numerical integration
Gaussian quadrature, Exercise

Exercise 3:
I Modify the previous program to use 5 quadrature points instead

of two.
I Integrate the functions

f1(x) = sin(xπ + π/2) f2(x) =
√

x + 1 f3(x) = x4 − x3

with the 2-point and the 5-point quadrature rules.
I Compare the results with the analytical values.
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Numerical integration
Gauss quadrature

I The fundamental theorem of Gaussian quadrature states that the
optimal abscissas of the nq−point Gaussian quadrature formulas
are precisely the roots of the orthogonal polynomial for the same
interval and weighting function.

I Gaussian quadrature is optimal because it fits all polynomials up
to degree 2nq − 1 exactly.
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Numerical integration
Gauss quadrature

An important property of the Legendre polynomials is that they are
orthogonal with respect to the L2 inner product on the interval [−1,1]∫ +1

−1
Pm(x)Pn(x)dx =

2
2n + 1

δmn
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Numerical integration
Gauss quadrature in 2D

Let us now turn to a two-dimensional integral of the form

I =

∫ b

a

∫ d

c
f (x , y)dxdy

The equivalent Gaussian quadrature writes:

Igq '
nq∑

iq=1

nq∑
jq

f (xiq , yjq )wiq wjq
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Numerical integration
Exercise 1

Exercise 4:

I Compute analytically the following integral:

f (x , y) = x2 + 4y

over the domain Ω = [11,14]× [7,10]

I Write a code which integrates this function by means of a 2x2,
3x3 or 4x4 Gauss-Legendre quadrature algorithm.
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Numerical integration

Applying this to Finite Elements

C. Thieulot | Numerical Quadrature



27

Numerical integration
Code flowchart

Before Now
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Numerical integration
Exercise 2

Verify the analytically derived expressions for K e
a , K e

d , and Me.

Me =

∫
Ωe

ρcpNT NdΩ

=

∫ x3

x1

∫ y3

y1

ρ(x , y)cp(x , y)NT (x , y)N(x , y)dxdy

=
hxhy

4

∫ +1

−1

∫ +1

−1
ρ(r , s)cp(r , s)NT (r , s)N(r , s)drds

=
hxhy

4

∑
iq

∑
jq

ρ(riq , sjq )cp(riq , sjq )NT (riq , sjq )N(riq , sjq )wiq wjq
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Numerical integration

K e
a =

ρcp

3



− 1
2 uhy − 1

2 vhx
1
2 uhy − 1

4 vhx
1
4 uhy + 1

4 vhx − 1
4 uhy + 1

2 vhx

− 1
2 uhy − 1

4 vhx
1
2 uhy − 1

2 vhx
1
4 uhy + 1

2 vhx − 1
4 uhy + 1

4 vhx

− 1
4 uhy − 1

4 vhx
1
4 uhy − 1

2 vhx
1
2 uhy + 1

2 vhx − 1
2 uhy + 1

4 vhx

− 1
4 uhy − 1

2 vhx
1
4 uhy − 1

4 vhx
1
2 uhy + 1

4 vhx − 1
2 uhy + 1

2 vhx


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Numerical integration

K e
d = k

hxhy

6



2
h2

x
+ 2

h2
y
− 2

h2
x

+ 1
h2

y
− 1

h2
x
− 1

h2
y

1
h2

x
− 2

h2
y

. 2
h2

x
+ 2

h2
y

1
h2

x
− 2

h2
y
− 1

h2
x
− 1

h2
y

. . 2
h2

x
+ 2

h2
y
− 2

h2
x

+ 1
h2

y

. . . 2
h2

x
+ 2

h2
y



C. Thieulot | Numerical Quadrature



31

Numerical integration

Me
d = ρcp

hxhy

9



1 1/2 1/4 1/2

. 1 1/2 1/4

. . 1 1/2

. . . 1
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