Cedric Thieule
c.thieulot@uu

June 5, 202(



Numerical integration

Introduction

» The basic problem in numerical integration is to compute an
approximate solution to a definite integral

/:) f(x)dx

to a given degree of accuracy.
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Numerical integration

Introduction

» The basic problem in numerical integration is to compute an
approximate solution to a definite integral

/: f(x)dx

to a given degree of accuracy.

» If f(x) is a smooth function, and the domain of integration is
bounded, there are many methods for approximating the integral
to the desired precision.
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Numerical integration

Reasons

There are several reasons for carrying out numerical integration.

» The integrand f(x) may be known only at certain points, such as
obtained by sampling. Some embedded systems and other
computer applications may need numerical integration for this
reason.
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Numerical integration

Reasons

There are several reasons for carrying out numerical integration.

» The integrand f(x) may be known only at certain points, such as
obtained by sampling. Some embedded systems and other
computer applications may need numerical integration for this
reason.

» A formula for the integrand may be known, but it may be difficult
or impossible to find an antiderivative that is an elementary
function. An example of such an integrand is f(x) = exp(—x?),
the antiderivative of which (the error function, times a constant)
cannot be written in elementary form.
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Numerical integration

Reasons

There are several reasons for carrying out numerical integration.

» The integrand f(x) may be known only at certain points, such as
obtained by sampling. Some embedded systems and other
computer applications may need numerical integration for this
reason.

» A formula for the integrand may be known, but it may be difficult
or impossible to find an antiderivative that is an elementary
function. An example of such an integrand is f(x) = exp(—x?),
the antiderivative of which (the error function, times a constant)
cannot be written in elementary form.

» It may be possible to find an antiderivative symbolically, but it
may be easier to compute a numerical approximation than to
compute the antiderivative. That may be the case if the
antiderivative is given as an infinite series or product, or if its
evaluation requires a special function that is not available.
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Numerical integration

in 1D

The simplest method of this type is to let the interpolating function be
a constant function (a polynomial of degree zero) that passes through
the point ((a+b)/2, f((a+b)/2)).

This is called the midpoint rule or rectangle rule.

/b (x)dx~ (b a2 by

4
2 a S
0 lﬁl-—= 9 p-‘f“fL__m//
‘—\q!,..q
2 1 0 1 2

C. Thieulot | Numerical Quadrature



Numerical integration

in 1D

If we divide the interval into 4 subintervals:

/01 f(x)dx

0.25 0.5 0.75 1
/ f(x)dx + / f(x)dx + / f(x)dx + / f(x)dx

0 0.25 0.5 0.75
0.25f(0.125) + 0.25/(0.375) + 0.25/(0.625) + 0.25f(0.875)

1
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Numerical integration

in 1D

The interpolating function may be a straight line (an affine function,
i.e. a polynomial of degree 1) passing through the points (&, f(a)) and
(b, £(b)).

This is called the trapezoidal rule.

/b f(x)dx ~ (b — a)w
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Numerical integration

in 1D

If we divide the interval into 4 subintervals:

/1 f(x)dx
Jo
0.25 0.5 0.75 1
= /O f(x)dx + / f(x)dx + / f(x)dx + / f(x)dx

0.25 J0.5 J0.75
£(0) +2f(0.25) 008 f(0.25)2+ f05)
£(0.5) +2f(0.75) o5 f(0.75)2+ f(1)

= 025 <f(20) + f(0.25) + f(0.5) + f(0.75) + '((21)>

= 025

0.25
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Numerical integration

For either one of these rules, we can make a more accurate
approximation by breaking up the interval [a, b] into some number n
of subintervals, computing an approximation for each subinterval,
then adding up all the results.

The midpoint rule can be stated as

/bf(x)dx:hnz_:f(a+(k+1/2)h) h=(b-a)/n
a k=0

where the subintervals are [kh, (k +1)h], k=0,1,....n—1.
The composite trapezoidal rule can be stated as

/f x)dx ~ h <(2a kz_: (a+ kh) + f(2b)>
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Numerical integration

in 1D

Exercise 1: Write a program which uses the midpoint rule to compute
(subdivide the interval in n subintervals)

| = / v f(x) dx fx)=x and  f(x) = cos(x)
0

Compute and plot the (absolute) error between the measured /, and
the analytical value I as a function of the subinterval size h.

Exercise 2: Same exercise as above but with the trapezoidal rule.
Which method is the most accurate?

Bonus: Repeat Ex.1 with | = ff f;(xzy3 + xy + 1)dxdy
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Numerical integration

» Interpolation with polynomials evaluated at equally spaced points
in [a, b] yields the Newton—Cotes formulas, of which the
rectangle rule and the trapezoidal rule are examples.
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Numerical integration

» Interpolation with polynomials evaluated at equally spaced points
in [a, b] yields the Newton—Cotes formulas, of which the
rectangle rule and the trapezoidal rule are examples.

> |If we allow the intervals between interpolation points to vary, we
find another group of quadrature formulas, such as the Gaussian
quadrature formulas.
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Numerical integration

» Interpolation with polynomials evaluated at equally spaced points
in [a, b] yields the Newton—Cotes formulas, of which the
rectangle rule and the trapezoidal rule are examples.

> |If we allow the intervals between interpolation points to vary, we
find another group of quadrature formulas, such as the Gaussian
quadrature formulas.

» A Gaussian quadrature rule is typically more accurate than a
Newton—Cotes rule, which requires the same number of function
evaluations, if the integrand is smooth (i.e., if it is sufficiently
differentiable).
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Numerical integration

Gaussian quadrature

» In numerical analysis, a quadrature rule is an approximation of
the definite integral of a function, usually stated as a weighted
sum of function values at specified points within the domain of
integration.
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Numerical integration

Gaussian quadrature

» In numerical analysis, a quadrature rule is an approximation of
the definite integral of a function, usually stated as a weighted
sum of function values at specified points within the domain of
integration.

» An n—point Gaussian quadrature rule, named after Carl Friedrich
Gauss, is a quadrature rule constructed to yield an exact result
for polynomials of degree 2n — 1 or less by a suitable choice of
the points x; and weights w; fori=1,... n.
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Numerical integration

Gaussian quadrature

» In numerical analysis, a quadrature rule is an approximation of
the definite integral of a function, usually stated as a weighted
sum of function values at specified points within the domain of
integration.

» An n—point Gaussian quadrature rule, named after Carl Friedrich
Gauss, is a quadrature rule constructed to yield an exact result
for polynomials of degree 2n — 1 or less by a suitable choice of
the points x; and weights w; fori=1,... n.

» The domain of integration for such a rule is conventionally taken
as [-1, 1], so the rule is stated as

+1 n
/ f(x)dx = > w,f(x;)

J =1 ig=T1
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Numerical integration

Gaussian quadrature
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Numerical integration

Gaussian quadrature

» Gaussian quadrature will only produce good results if the
function f(x) is well approximated by a polynomial function within
the range [-1,1].
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Numerical integration

Gaussian quadrature

» Gaussian quadrature will only produce good results if the
function f(x) is well approximated by a polynomial function within
the range [-1,1].

» The method is not, for example, suitable for functions with
singularities.
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Numerical integration

Gaussian quadrature

Gauss-Legendre points and their weights

Number of points, n Points, x; Weights, w;
1 0 2
1
2 +4/3 1
8
3 ° g
+ \/E 5
5 9
3_2 /6 18++/30
07— 7\/; =
4
3 2 /6 18—/30
TtV %
128
0 25
1 _ 10 | 32241370
5 £34/0-2/7 900
1 10 | 322-13y70
+34/5+24/F

900

X; is the i-th root of the Legendre polynomial P,(x)
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Numerical integration

Gaussian quadrature

Comparison between 2-point Gaussian and trapezoidal quadrature.

Gauss 2

o & A b © N &

10
Bl ,\/I 0 \/I 1
3 3

+1
Blue line: polynomial y(x) = 7x3 — 8x2 — 3x + 3 with [ y(x)dx =2/3
—1
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Numerical integration

Gaussian quadrature

10
Bl ,\/I 0 \/I 1
3 3

+1
Blue line: polynomial y(x) = 7x3 — 8x2 — 3x + 3 with [ y(x)dx =2/3
—1

The trapezoidal rule returns the integral of the orange dashed line,
equalto y(—1) +y(1) = —-10
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Numerical integration

Gaussian quadrature

10
Bl ,\/I 0 \/I 1
3 3

+1
Blue line: polynomial y(x) = 7x3 — 8x2 — 3x + 3 with [ y(x)dx =2/3
—1

The trapezoidal rule returns the integral of the orange dashed line,
equalto y(—1) +y(1) = —-10

The 2-point Gaussian quadrature rule returns the integral of the black
dashed curve, equal to y(—+/1/3) + y(/1/3) =2/3
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Numerical integration

Gaussian quadrature

10
Bl ,\/I 0 \/I 1
3 3

+1
Blue line: polynomial y(x) = 7x3 — 8x2 — 3x + 3 with [ y(x)dx =2/3
—1

The trapezoidal rule returns the integral of the orange dashed line,
equalto y(—1) +y(1) = —-10

The 2-point Gaussian quadrature rule returns the integral of the black
dashed curve, equal to y(—+/1/3) + y(/1/3) =2/3

Such a result is exact, since the green region has the same area as
the sum of the red regions.
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Numerical integration

Gaussian quadrature

Y
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> An integral over [a, b] must be changed into an integral over
[—1, 1] before applying the Gaussian quadrature rule.
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Numerical integration

Gaussian quadrature

> An integral over [a, b] must be changed into an integral over
[—1, 1] before applying the Gaussian quadrature rule.

» This change of interval can be done in the following way:

2a(x—a)—1 x:b;a(1+r)+a ax =2 2q
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Numerical integration

Gaussian quadrature

1 (O
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> An integral over [a, b] must be changed into an integral over
[—1, 1] before applying the Gaussian quadrature rule.

» This change of interval can be done in the following way:

2a(x—a)—1 x:b;a(1+r)+a ax =2 2q

b - +1 B n
/ fx)dx = 2 . a/ f(rydr ~ 2 - 25" wf(n,)
; :
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Numerical integration

Gaussian quadrature, example 1

For simplicity, a= —1, b = +1.
Let us take f(x) ==

+1 +1
/:/ f(x)dx = dx = 2w

J -1 1
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Numerical integration

Gaussian quadrature, example 1

For simplicity, a= —1, b = +1.
Let us take f(x) ==

+1 +1
/:/ f(x)dx = dx = 2w

J -1 1

Ng ng
/gq:/ dX—E w;, f(xi,) —E W,q7r—7rg w;, = 2w
—1 ig=1 ig=1 ig=1

since Z,q w, =21
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Numerical integration

Gaussian quadrature, example 2

Let us now take f(x) = mx +p

1 1 1
I:/ f(x)dx:/ (mx+p)dx—{2mx2+px+0} =2p

J J-1
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Numerical integration

Gaussian quadrature, example 2

Let us now take f(x) = mx +p

1 1 1
I:/ f(x)dx:/ (mx+p)dx—[2mx2+px+0} =2p

J J-1

Ng
lyg = [1 x)dx = Z w;, f(x;,) = Z w;, (mx;, + p)

iq=1 iq=1
ng Ng
= M)y WX, +p)_ wj,=2p
ig=1 ig=1
—— ——
=0 =2

since the quadrature points are symmetric w.r.t. to zero on the x-axis.
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Numerical integration

Gaussian quadrature, example 3

Let us take f(x) = x?
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Numerical integration

Gaussian quadrature, example 3

Let us take f(x) = x?

+1 Mq Nq
lgg = / fx)dx=> " w,f(x,)=>_ w,x}
- g1 g1
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Numerical integration

Gaussian quadrature, example 3

Let us take f(x) = x?
= /+1 F(x)dx = /+1 X2ax — FXS} T2
. . e
11 Ng ng
lgg = / fx)dx=> " w,f(x,)=>_ w,x}
- P =1

> ng=1: x ) =0, Wi, =2. lgg =0
> nq:2.xq :—1/f,xq =1/V/3, Wé”:Wéz):L/gq

wIlin
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Numerical integration

Gaussian quadrature, example 3

1 1 , 1 3+1 2
I:/ fxdx:/ xdx{x} = —
1 (x) —1 3 4 3

+1 Mq Nq
lgg = / fx)dx=> " w,f(x,)=>_ w,x}
- g1 g1

> ng=1: x ) =0, Wi, =2. lgg =0

>nq:2;xq :_1/\fqu 1/[ Wq = cs):1-/gq:%
» It also works for all ng > 2!
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Numerical integration

Gaussian quadrature, example

program integration

implicit none

integer, parameter:: ng=2

real(8),dimension(nq),parameter:: xq=(/-1.d@/sqrt(3.d0),+1.de/sqrt(3.de)/)
real(8),dimension(nq),parameter:: wq=(/1.d0,1.d@/)

real(8) I

integer iq

I=0.d0

do igq=1,nq
I=I+wq(iq)=fct(xq(iq))

end do

write(x,%) 'I=",I

contains

function fet(x)

implicit none

real(8) x,fct

1fct=3.14

! fet=x+1

fot=xxx2

end function

end program
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Numerical integration

Gaussian quadrature, example

(to copy-paste)

program integration
implicit none

integer, parameter:: nq=2

real(8),dimension(nq) ,parameter:: xq=(/-1.d0/sqrt(3.d0),+1.d0/sqrt(3.d0)/)
real(8),dimension(nq) ,parameter:: wq=(/1.d0,1.d0/)

real(8) I

integer iq

1=0.d0

do ig=1,nq

I=I+wq(iq)*fct(xq(iq))

end do

write(x,%) *1=7,T

contains

function fct(x)

implicit none

real(8) x,fct

fot=x**2

end function

end program
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Numerical integration

Gaussian quadrature, Exercise

Exercise 3:

» Modify the previous program to use 5 quadrature points instead
of two.

» Integrate the functions
fi(x) = sin(x7 + 7/2) b(x) = Vx+1 f3(x) = x* — X3

with the 2-point and the 5-point quadrature rules.
» Compare the results with the analytical values.
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Numerical integration

Gauss quadrature

» The fundamental theorem of Gaussian quadrature states that the
optimal abscissas of the ny—point Gaussian quadrature formulas
are precisely the roots of the orthogonal polynomial for the same
interval and weighting function.

» Gaussian quadrature is optimal because it fits all polynomials up
to degree 2n, — 1 exactly.

legendre polynomials

T

05 -

Pa(x)

05
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Numerical integration

Gauss quadrature

First 40 Legendre
T T

P,(x)

An important property of the Legendre polynomials is that they are
orthogonal with respect to the L2 inner product on the interval [—1, 1]

+1 2
Pm(X)Pn(X)dX = on + 1*5mn

—1
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Numerical integration

Gauss quadrature in 2D

Let us now turn to a two-dimensional integral of the form

b sd
I = / / f(x, y)dxdy
Ja Jce

The equivalent Gaussian quadrature writes:

ng ng

ng = Z Z f(Xiq7 }//Q)Wia W/a

ia=1"Jq
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Numerical integration

Exercise 1

Exercise 4.
» Compute analytically the following integral:

f(x.y) = x° + 4y

over the domain Q = [11,14] x [7,10]

» Write a code which integrates this function by means of a 2x2,
3x3 or 4x4 Gauss-Legendre quadrature algorithm.
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Numerical integration

Applying this to Finite Elements
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Numerical integration

Code flowchart

initialisation & setup
mesh domain (fill icon array)
initialisation & setup . timestepping loop
mesh domain (ﬁ” icon array) do iel=1,nel loop over elements
) . use icon array to retrieve
. timestepping loop node # which make up iel
do iel=1,nel loop over elements do ig=1,nq loop over quad. pts
- use icon array to retrieve A°=A°+ ..
node # which make up iel b®=b®+ ...
- compute M® and K;°
H e €
build A an_d b assemble in Aand b
- assemble in Aand b
apply b.c.
apply b.c. solve
solve
Before Now
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Numerical integration

Exercise 2

Verify the analytically derived expressions for K, K7, and M°. —"

o

me = / pcoNTNAQ

X3

/ / p(%.¥)Go(X. y)NT (x, y)N(, y)dixdly
1

hh +

b p(r, s)co(r, s)N'(r,s)N(r, s)drds

hy h
y T
- ZZp (i Si)Co(riy S, )NT (1, 81, )N( T, S5, ) Wi W,
la
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Numerical integration

1 1 1 1 1 1 1
—suhy — zvhe  suh, — zvhy  zuhy 4+ zvhy —Zuhy, + Svh O
—suhy — tvh  Yuh, —Lvh, Tuh, + Ivhe —luh, + Lvh,
—Xuhy, — tvhe tuh, —Jvhe Suhy + Svhe —Luhy, + fvhy

1 1 1 1 1 1 1
—zuhy — svhy zuh, — zvhy suhy, + zvhy —zuhy +3vhy
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Numerical integration

2 .2 _2.,.1 _1_1 1_2

Rt "RTE "R R B R

24,2 1 _2 _1_ 1

by mtme ®w ol
KS =k
a 6

2 2 2 1

TR 2t

2 .2

R
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Numerical integration

1 1/2 1/4 1/2
heh, 1 1/2 1/4

Mg:pCp 9

1 1/2

1
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