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Introduction
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FEMin 2D

element

What is the temperature at a point M(x, y) inside the element ?



FEM in 2D

The temperature inside an element is given by:

T =S N T = - T
k=1
where
N = (Ny(F) Na(F) Na(F) ... Nm(F))  TT=(Ty To Ts ... Tn)
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From the vector of shape functions,
N=(N;y No N3 ... Np)

one can build the gradient matrix (in Cartesian coords.):

IN; IN» ON3 ONp

ox ox ox t ox

_ YN IN; IN, ON3 ONp
B=VN=| 9h 2% 2% o
ANy IN, ON3 ONp

0z 0z 0z co 0z

Its size is ndim x m
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1D linear shape functions

in 1D, for x; < x < X
T(X) = N1 (X)T1 + Ng(X)Tg

with
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2D bi-linear shape functions

in 2D, in a quadrilateral:

T(x,y) = Ni(x,y)T1 + No(x,y) To + N3(x,y) Tz + Na(x, y) T4

with
v = (%57 (%)
wen = (52)(7%)
M = (5 (452
vy = (%57) (7))
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FEM in 2D

2D bi-linear shape functions

in 2D, in a quadrilateral:

T(x,y) = Ni(x,¥) Ty + Na(x, y) T2 + Na(x, y) Tz + Na(x, ¥) Ta

with
v = (57) (257
hx hy
B X — X4 Ya—y
N2(X7y) - ( hX >< hy )
B X — X4 Y =)
wen = (552) (452)
X3 — X -
nay) = () (450
hy y
At point 1, of coordinates (x1, y1), we have

Ni(x1,y1) =1 Na(x1,y1) =0  N3(x1,y1) =0  Na(x1,y1) =0



FEM in 2D

we can then compute the gradient matrix B in 2D:

ON;y ON,  ONz  ON,
ox ox ox ox
B(x,y) =
’ ONy ON> IN3 INy
oy oy ay oy
_ 1~y 1 -y A Y=x

_ 1 y=n

he hy he hy he hy he hy

1 x3—x 1 x—xq 1 x=Xx 1 X3—x
h, hy h,  hy hy  hy y N
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Carrying out a change of variables:
XeE[Xi:x] — re[-1:1]

ye:ysl — se[-1:1]
so that

2 2
f:,TX(X—)ﬁ)—1 h*(}’ ") —
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Then

Nir.s) = 5(1-n(1-s)

No(r,s) = %(1+r)(1—s)

Ns(r.s) = (1401 +s)

Ny(r,s) = %(1fr)(1+s)
and

Ax(1—-s) £3(1-8) f3(1+s) —pi(1+9)
B(r,s) =

(—h‘éﬁ—r) —na(1+n p30+r) g3 -r) )
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Finally
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The strong form of the heat transport equation in 1,2,3 dimensions
writes:

aT . - .
pcp(at-f—v-VT):V-(kVT)—i—H
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FEM in 2D

The strong form of the heat transport equation in 1,2,3 dimensions
writes:

ot

The weak form writes:

/pcpf(f')TdQJr/ pcpf(F)VﬁTdQ:/ f(F)ﬁ(kﬁT)dm/ f(F)HdQ
JQ Q Q JQ

T _ - L
pcp(a+v-VT>:V~(kVT)+H
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FEM in 2D

The strong form of the heat transport equation in 1,2,3 dimensions
writes:

T . - .
pcp(aat-l—v-VT>zv~(kVT)+H

The weak form writes:
/ pCof (F) TdQ+ / pCof(F)V-V TdQ = / f(F)V-(kV T)dQ-+ / f(F)HAQ
JQ Q Q JQ

We integrate by parts the diffusion term and neglect here again the
surface term so that:

/pcpf(F)TdQ+/ pCof (F)7-9 T+ ﬁf(F).(Nr)dQ:/ £(7)HdQ
Q Q Q Q
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We then use the additive property of the integral:

elts

so that

/ pcpf(F)TdQ+/ pcpf(F)VﬁTdQ+/ ﬁf(F)-(NT)dQ:/ f(FYHAQ
Ja. Q JQ Q
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Let us then compute separately

A, = /pCp (F)TdQ

™M
o)
I
\

pcp (F)V-VTdQ
T¢ /6 (F) - (kVT)dQ

f(F)H(x,y)d

Q
0
\
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FEM in 2D

NS = /pCpfF)TdQ
Qe

I
S—

pCof (F) Z Nk(F) TedQ
Qe

- ([ )

Letting f(7) — N then

A = (/ pcpK/TK/dQ)-T
J Qe

N has size m, so N7 N is a matrix of size m x m.
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= (/Qpcpf(F)V-BdQ>-7"
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17
/ (P - kvwk(mrkdrz

>
- (0,

VI(F) - (NK/)dQ) T

x

Letting f(7) — N then

/Q VE(F) - (kB)dQ) T

.
T = < kBT-BdQ)-T
JQe



FEM in 2D

Qf

/ f(r)H(x,y)dQ

e

Letting f(7) — N then

Q¢ = NTH(x, y)dS
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FEM in 2D

The weak form then writes:

</ pcpK/TK/dQ> T (/ pcpK/T\?-BdQ) T
e Q

+ ( kBT . BdQ> .T=[ NTH(x,y)dQ
Qe J Qe

or, _
Me - T°+ (KS+KE) T°=F°
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A simple example

local numbering

global numbering
l\y .

16 17 18 19 20 icon(1,1)=1
icon(1,2)=2
icon(1,3)=7

9 10 11 12 icon(1,4)=6

11 12 13 14 15

5 6 7 8 icon(7,1)=8

6 7 8 9 109 icon(7,2)=9
icon(7,3)=14
icon(7,4)=13

1 2 3 4
1 2 3 4 5 X
(Fortran)
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A simple example

local numbering

y global numbering
A _

15 16 17 18 19 !con[0,0]=0
icon[0,1]=1
icon[0,2]=6

8 9 10 11 icon[0,3]=5

10 11 12 13 14

4 5 6 7 icon[6,0]=7

5 6 7 8 9 icon[6,1]=8
icon[6,2]=13
icon[6,3]=12

0 1 2 3
0 1 2 3 4 X
(Python)
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Since there are four vertices per element (m = 4), then N is of length
4 and M¢€ is a 4x4 matrix.

Me = / pcoNTNdQ

/ / pcoN )N(x, y)dxdy
r1

1 B
hy N(r,s)N(r,s)drds

Pp4

-1 J-1
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SO

h.h ~+1 +1
= pCp—i / (1 —r)2(1 — s)?drds

h.h 41 ~+1
- e ”/ (1—r)2dr/ (1 — s)2ds

J—1
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Likewise we arrive at:
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K:= | kB".BdQ

J Qe

B is a 2x4 matrix (ndim x m) so that BT - B is a 4x4 matrix.
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Exercise 1

Compute the analytical values of M, K, and Ky for rectangular
elements of size hy, h,,.
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Exercise 2

Set nelx=4 and nely=3 (for now) and write a double for loop which
automatically fills the icon array as shown here under:

y ocalnumbering  gabal numbering
15 16 17 18 19  icon[0,0]=0
icon[0,1]=1
icon[0,2]=6
8 9 10 11 icon[0,3]=5
10 11 12 13 14
4 5 6 7 icon[6,0=7
5 6 7 8 9 icon[6,1]=8
icon[6,2]=13
@ 1 9 3 icon[6,3]=12
0 1 2 3 4 X
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Exercise 3

A simple (time-dependent) analytical solution for the temperature
equation exists for the case that the initial temperature field is

x2+y2]

o2

T(Xayvt: O) = To + Tmax exp {

where Tpax is the maximum amplitude of the temperature
perturbation at (x, y) = (0,0) and ¢ its half-width.
The solution of the time-dependent PDE is
Tmax ex o X2 + _,V2
1+ 4tk/0? P\" o2+ 4ts

Set Ly=100km and L, = 80km, k = 3, C, = 1000, p = 3000, Q =0,
Tmax = 100°, Ty = 200°, and o = 10*m.

Generate a nelx x nely grid in the [-L,/2, L/2] x [-L,/2,L,/2]
domain. Write a function which takes x, y, t, To, Tmax,  and o as
argument and returns the analytical temperature value. Write a an
explicit FEM code which solves the 2D diffusion equation. At each

time step prescribe on the boundary the analytical solution.

T(X7y7t):T0+ (2)
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Exercise 4

We wish to compute the advection of a product-cosine hill in a
prescribed velocity field. The initial temperature is:

Tofry) = { #(1+eosm 8 (1reosn ) s (y -yt < of

otherwise

The boundary conditions are T(x, y) = 0 on all four sides of the unit
square domain. In what follows we set x; = yo =2/3and ¢ = 0.2.
The velocity field is analytically prescribed:

= (—(y — L,/2),+(x — Lx/2)). Resolution is set to 31 x 31 nodes.
The timestep is set to 6t = 27/200 and we wish to carry out 200
timesteps so that the cone does a 2 rotation.
See Stone 43 for results/figures of this experiment obtained with
Finite Elements.
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