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The wave equation (1)

Wave equation in R2
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where

I u = u(x , y , t) transverse displacement

I v = wave propagation speed
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Vibrating drum (1)

I Vibrating circular drum : Boundary Value Problem

I PDE : Wave equation
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I Domain
D = (x , y , t)|x2 + y 2 < 1, t > 0

I Boundary values

u(x , y , t) = 0 for x2 + y 2 = 1, t > 0,

u(x , y , 0) = f (x , y)



Vibrating drum (2)

Circular drum ⇒ Polar Coordinates

x = r cos θ, y = r sin θ

r ≥ 0, 0 ≤ θ ≤ 2π

Laplace operator in polar coordinates
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Vibrating drum (3)

Wave equation for u = u(r , θ, t) in polar coordinates
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Strong (temporary) assumption : Radially symmetric vibrations u = u(r , t)
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Boundary conditions for vibrating drum

u(1, t) = 0, t ≥ 0

u(r , 0) = f (r), 0 ≤ r ≤ 1
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Separation of variables (1)

Assume
u(r , t) = R(r)T (t)

Wave equation for u = RT
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Separation of variables (2)

We introduce the separation constant λ as follows :
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so that we obtain two ODE’s :
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Eq.(1) writes
T ′′ + λ2v 2T = 0

so that
T (t) = c1 cos(λvt) + c2 sin(λvt)
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Separation of variables (3)

Eq.(2) writes

r 2R ′′ + rR ′ + λ2r 2R = 0

Change of variable s = λr , R(r) = R(s/λ) = R̃(s). (Note that the b.c.
R(1) = 0 now writes R̃(λ) = 0)
We finally get :

s2R̃ ′′ + sR̃ ′ + s2R̃ = 0

This is Bessel’s differential equation.
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I Friedrich Wilhelm Bessel (22 July 1784 17 March 1846)

I German astronomer, mathematician, physicist and geodesist.

I first astronomer who determined reliable values for the distance from the
sun to another star by the method of parallax.

I A special type of mathematical functions were named Bessel functions
after his death, though they had originally been discovered by Bernoulli



Bessel functions (1)



Bessel functions (2)



Bessel functions (3)



Bessel functions (4)



Solution to the PDE (1)

A solution to
s2R̃ ′′ + sR̃ ′ + s2R̃ = 0

is then the first kind of Bessel function J0(s), or

R(r) = J0(λr)

The eigenvalue λ is obtained from the boundary condition

R(1) = J0(λ) = 0

i.e. λ is a zero of the J0 Bessel function.
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Solution to the PDE (2)

Finally the solution to the PDE can be written :

u(r , t) = R(r)T (t) = J0(λr) [c1 cos(λvt) + c2 sin(λvt)]

where λ0k is the k-th zero of J0(λ) = 0.



Solution to the PDE (3)
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Non radially symmetric solutions
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Separation of variables :

u(r , θ, t) = R(r)Θ(θ)T (t)

Three ODEs, two eigenvalue problems (for R and Θ).
Solutions with eigenvalues n, λ :

I Θ = cos(nθ), n = 0,1,2,3,

I R = Jn(λr), Bessel function of order n

I T = cos(λvt)

I u(r , θ, t) = Jn(λr) cos(nθ) cos(λvt)

Eigenvalue λ = λnk is the k-th zero of Jn(λ) = 0



Solution to PDE (1)



Solution to PDE (2)



Solution to PDE (3)



Superposition


