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The wave equation (1)

Wave equation in R?
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where
> u = u(x,y,t) transverse displacement

» v = wave propagation speed
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Vibrating drum (1)

» Vibrating circular drum : Boundary Value Problem
» PDE : Wave equation
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» Domain
D=(xy,t)x*+y*<1,t>0

v

Boundary values

u(x,y,t)=0 for Z+y*=1,t>0,
u(x,y,0) = f(x,y)



Vibrating drum (2)

Circular drum = Polar Coordinates

x =r cos#, y=rsinf

r>0, 0<0<2r



Vibrating drum (2)

Circular drum = Polar Coordinates

x =r cos#, y=rsinf

r>0, 0<0<2r

Laplace operator in polar coordinates
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Vibrating drum (3)

Wave equation for u = u(r,0,t) in polar coordinates
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Vibrating drum (3)

Wave equation for u = u(r,0,t) in polar coordinates
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&Strong (temporary) assumption : Radially symmetric vibrations u = u(r, t)
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Boundary conditions for vibrating drum
u(l,t)=0,t>0

u(r,0)=1(r), 0<r<1



Separation of variables (1)

Assume
u(r,t) = R(r)T(t)



Separation of variables (1)

Assume
u(r,t) = R(r)T(t)

Wave equation for u = RT

1 &*(RT) _ &*(RT) , 19(RT)
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Separation of variables (1)

Assume
u(r,t) = R(r)T(t)

Wave equation for u = RT
1 &*(RT) _ &*(RT) N 19(RT)
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Let us define R 5
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then we have

= %RT”:R”T—F%R'T



Separation of variables (1)

Assume
u(r,t) = R(r)T(t)

Wave equation for u = RT
1 &*(RT) _ &*(RT) , 19(RT)
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Separation of variables (2)

We introduce the separation constant A as follows :

17" _R' 1R _
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Separation of variables (2)

We introduce the separation constant A as follows :

17" _R' 1R _
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so that we obtain two ODE's :
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Separation of variables (2)

We introduce the separation constant A as follows :
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so that we obtain two ODE's :
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Eq.(1) writes
T+ XV’T =0
so that
T(t) = c1cos(Avt) + casin(Avt)



Separation of variables (3)

Eq.(2) writes

PR + R + X°FPR=0



Separation of variables (3)

Eq.(2) writes

PR+ R + Xr’R=0
Change of variable s = Ar, R(r) = R(s/)\) = R(s). (Note that the b.c.
R(1) = 0 now writes R(\) = 0)
We finally get : ~ y y

SR’ +sR' +s°R=0



Separation of variables (3)

Eq.(2) writes

PR+ R + Xr’R=0
Change of variable s = Ar, R(r) = R(s/)\) = R(s). (Note that the b.c.
R(1) = 0 now writes R(\) = 0)

We finally get : ~ y y
S’R"+sR' +s°R=0

This is Bessel's differential equation.



Friedrich Wilhelm Bessel (22 July 1784 17 March 1846)
German astronomer, mathematician, physicist and geodesist.

first astronomer who determined reliable values for the distance from the
sun to another star by the method of parallax.

A special type of mathematical functions were named Bessel functions
after his death, though they had originally been discovered by Bernoulli



Bessel functions (1)

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel,
are the canonical solutions y(x) of Bessel's differential equation

fy dy
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for an arbitrary complex number a (the order of the Bessel function). Although a and —a produce the same

+(2* —a®)y=0

differential equation for real q, it is conventional to define different Bessel functions for these two values in such a
way that the Bessel functions are mostly smooth functions of a

The most important cases are for a an integer or half-integer. Bessel functions for integer a are also known as
cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in
cylindrical coordinates. Spherical Bessel functions with half-integer a are obtained when the Helmholtz
equation is solved in spherical coordinates.



Bessel functions (2)

Because this is a second-order differential equation, there must be two linearly independent solutions. Depending
upon the circumstances, however, various formulations of these solutions are convenient. Different variations are

summarized in the table below, and described in the following sections.

Type First kind Second kind
Bessel functions Ja Ya
modified Bessel functions | Iy Ky
Hankel functions Ho) = Uy +iYg | Ha@ = Uy - iy
Spherical Bessel functions | ji, Vn

Spherical Hankel functions | by = ji, + iy | B@ = j; - ivy



Bessel functions (3)

Bessel functions of the first kind: J, [edit]

Bessel functions of the first kind, denoted as J,(x), are solutions of Bessel's differential equation that are finite at
the origin (x = 0) for integer or positive a, and diverge as x approaches zero for negative non-integer a. It is
possible to define the function by its series expansion around x = 0, which can be found by applying the
Frobenius method to Bessel's equation:(]
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where (2) is the gamma function, a shifted generalization of the factorial function to non-integer values. The
Bessel function of the first kind is an entire function if a is an integer, otherwise it is a multivalued function with
singularity at zero. The graphs of Bessel functions look roughly like oscillating sine or cosine functions that decay
proportionally to 1/vx (see also their asymptotic forms below), although their roots are not generally periodic,
except asymptotically for large x. (The series indicates that —J;(x) is the derivative of Jy(x), much like —sin(x) is
the derivative of cos(x); more generally, the derivative of J(x) can be expressed in terms of J,.1(x) by the
identities below.)



Bessel functions (4)
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Solution to the PDE (1)

A solution to B ; ;
SR’ +sR' +s°R=0
is then the first kind of Bessel function Jy(s), or

R(r) = Jo(Ar)



Solution to the PDE (1)

A solution to
s’R"4+sR' +s°R=0
is then the first kind of Bessel function Jy(s), or
R(r) = Jo(Ar)
The eigenvalue X is obtained from the boundary condition
R(1) = Jh(A) =0

i.e. X is a zero of the Jy Bessel function.



Solution to the PDE (2)

Finally the solution to the PDE can be written :
u(r,t) = R(r)T(t) = Jo(Ar) [c1 cos(Avt) + ¢ sin(Avt)]

where Aok is the k-th zero of Jo(A) = 0.



Solution to the PDE (3)
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Jo (x)
2.4048
5.5201
8.6537

11.7915
14.9309

Ji (x)
3.8317
7.0156

10.1735
13.3237
16.4706

Jy (x)
5.1356
8.4172

11.6198
14.7960
17.9598

I3 (x)
6.3802
9.7610

13.0152
16.2235
19.4084

Jy (x)
7.5883
11.0647
14.3725
17.6160
20.8269

20

Js (x)
8.7715
12.3386
15.7002
18.9801
22.2178
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Non radially symmetric solutions
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Separation of variables :

u(r,0,t) = R(r)©(0) T(t)

Three ODEs, two eigenvalue problems (for R and ©).
Solutions with eigenvalues n, A :

» © =cos(nf), n=10,1,2,3,

> R = Jy(Ar), Bessel function of order n
» T = cos(Avt)
> u(r,0,t) = Jo(Ar) cos(nf) cos(Avt)

Eigenvalue X\ = X\ is the k-th zero of J,(A) =0



Solution to PDE (1)

u(r,8) = Jo(A21r) cos (26)

2_cylindrical




Solution to PDE (2)

u(r,8) = Jo(Aoor) cos (26)

:_cylindrical

u(r,0) = 0if Jo(A2r) =0orcos(20) =0



Solution to PDE (3)

Mode 01

Q.....

f,  159f 214f, 230f 265f 292f,

Mode
g

51 32 61

emoving 316f 350f,  360f,  365f 406f 4.15f,
in opposite After Berg and Stork
directions.




Superposition

For arbitrary initial value
u(r,8) = f(r,0)

vibration of drum = Superposition of modes

u(r,0,t) = Z Z Ckndn(Ankr) cos (nf) cos (Apvt) + -

n=0 k=1

Coefficients ¢y, are coefficients in “Fourier-Bessel” series of f.



