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the diffusion equation (1)

The heat transport equation writes :

T
pPCp a—+v-VT =V - (kVT)+ H
ot N—— —_—
adv. diff. prod.
Assume :
> no advection (v = 0)
» no radiogenic heat production (H = 0)

Then the temperature field must verify :
oT
— =V - (kVT
pCP 8t ( )

If k = constant , then it is equivalent to solve

oT

22
8t_aVT

where o = k/pc, is the heat diffusivity.



the diffusion equation (2)

Partial separation of variables into a space equation and a time equation :

T(x,y,z,t) =0(x,y,z)®(t)
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the diffusion equation (2)

Partial separation of variables into a space equation and a time equation :
T(x,y,2z,t) = 0(x,y, z)®(t)
We substitute into the diffusion equation :

oP

0(x,y,z) T (t) &’ V20
We further divide by 0® to get :
1100 1_,
oot 07"

> the left side is a function of time t

> the right side is a function only of the space variables x, y, z
— both sides are the same constant



the diffusion equation (3)

We obtain

or,

119 _ iy

a? & ot
1 2 2
il - Kk
OVG

9% | pere =

ot
V30 + k¥ =



the diffusion equation (3)

We obtain
119 _ iy
a2d ot
1 2 2
- - _k
0V9
or,
a—¢+k2a2¢ = 0
ot
V0+ Kk = 0

Eq(2) is the Helmholtz equation.



the diffusion equation (3)

We obtain
119 _ iy
a?d ot
1_, 2
hd I
OVQ
or,
— + ka"P = 1
8t+ @ 0 (1)
V04 K0 = 0 (2)

Eq(2) is the Helmholtz equation.
Eq(1) can be integrated :

d)(t) _ eszozzt

(as t increases the temperature of a body cannot increase to infinity)



Maths, hairstyle and history (continued)

Hermann Ludwig Ferdinand von Helmholtz (1821-1894)
German physician, physicist



Maths, hairstyle and history (continued)

Hermann Ludwig Ferdinand von Helmholtz (1821-1894)
German physician, physicist

Whoever in the pursuit of science, seeks after immediate practical utility may
rest assured that he seeks in vain.
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Helmholtz Resonators (1)

» These resonators were developed for picking out particular frequencies
from a complex sound.

> They consists of a body to contain a volume of air, a hole or neck in
which a slug of air can vibrate back and forth, and a slender nipple that
can be held in the ear canal (or, today, connected to a sound level meter).

» The enclosed volume of air acts as a spring connected to the mass of the
slug of air, and vibrates at a frequency dependent on the density and
volume of the air and the mass of the slug of air in the neck.
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from a complex sound.

> They consists of a body to contain a volume of air, a hole or neck in
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http ://physics.kenyon.edu/EarlyApparatus/Rudolf_Koenig-Apparatus/Helmholtz.Resonator /Helmholtz_R html




Helmholtz Resonators (2)

"Helmholtz's large apparatus for compounding timbres of 10 harmonics ... 1,500 francs”, 1889 Koenig catalogue
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"Helmholtz's large apparatus for compounding timbres of 10 harmonics ... 1,500 francs”, 1889 Koenig catalogue

» The ten electrically-driven tuning forks, each facing a Helmholtz resonator
tuned to the same frequency, run continuously, but produce little sound.

> Pressing one of the keys moves the dull black shutter away from the hole
of the resonator, and the sound becomes quite loud.

» Rubber feet under the corners of the wooden stand keep the vibrations
from reaching the baseplate that runs under all ten of the tuning fork
systems.
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Helmholtz Resonators (2)

"Helmholtz's large apparatus for compounding timbres of 10 harmonics ... 1,500 francs”, 1889 Koenig catalogue

» The ten electrically-driven tuning forks, each facing a Helmholtz resonator
tuned to the same frequency, run continuously, but produce little sound.

> Pressing one of the keys moves the dull black shutter away from the hole
of the resonator, and the sound becomes quite loud.

» Rubber feet under the corners of the wooden stand keep the vibrations
from reaching the baseplate that runs under all ten of the tuning fork
systems.

= Fourier synthesis!!

http ://physics.kenyon.edu/ EarlyApparatus/Rudolf_Koenig-Apparatus/Fourier_Synthesis/Fourier_Synthesis. html



the diffusion equation - Example (1)

Let us consider a flow of heat through a slab of thickness L :

T=0

T=0

The slab has initially a steady-state temperature distribution with T = 0 at
x=0and T =100 at x = L.



the diffusion equation - Example (1)

Let us consider a flow of heat through a slab of thickness L :

The slab has initially a steady-state temperature distribution with T = 0 at
x=0and T =100 at x = L.

The faces of the slab are so large that we neglect end effects.

Heat flows only in the x direction



the diffusion equation - Example (2)

We want to find the temperature for x € [0, L] at all times.
We need to solve : s

d?0

22t K0 =0

0(x) = { sin kx

cos kx

which leads to

and the general solution writes

T(x,t) = 0(x)d(t)

sin kx — K202t
e
cos kx



the diffusion equation - Example (3)

T(x,t) = 0(x)d(t)

sin kx e,k2a2t
cos kx



the diffusion equation - Example (3)
T =)= { G e

> we discard the solution in cosine because T(0,t) =0 :

T(x,t) = 0(x)®(t) = sin kx e—k2a2t



the diffusion equation - Example (3)

i 2.2
T(x, ) = 0(x)(t) = { n fx }e*k ot
> we discard the solution in cosine because T(0,t) =0 :
T(x,t) = 0(x)®(t) = sin kx e Kot
> we impose T (L, t) = 0 which leads to
k=nm/L

The basis functions are then

To(x, t) = e (mme/D7t gjp 17X

The solution to the problem writes :

T(x,t) = D baTulx, t) = 3 bye™ "™/ e sin T
n=1 n=1



the diffusion equation - Example (4)

Finally, at t = 0, we want T(x,0) = 100x/L :

Zb,, |nm

This means finding the fourier sine series for function 100x/L on [0, L]. We

arrive at
_ 200(=1)"!

T n
and then
_ 200 Z =1 7(n7roc/L)2tS-n nmwx



Numerical approach (1)

Use ELEFANT code to solve the same problem.

Programming the analytical solution



Numerical approach (1)

Use ELEFANT code to solve the same problem.

Programming the analytical solution

200 > (71)” —(nma /L)%t nmx
T(x,t) = — —_—
(0="02 n ]
tt=0
do n=1,100
tt=tt+((-1)**(n-1))/dble(n) * exp(-time*(n*pi/Lx)**2)*sin(n*pi*x/Lx)
end do

tt=tt*200.d0/pi



Numerical approach (2)

film



Numerical approach (3)

Analytical solution

calculated temperature

Time: 0.010000

Temperature
97.245

72,93
48.62
24,31
0.000



Numerical approach (3)

Analytical solution

calculated temperature

Time: 2.000000

Temperature
E97.245

72.93
248.62

E24.31
0.000

i



Numerical approach (3)

Time: 5.000000

Temperature
97.245

72.93
248.62
24,31
0.000

Analytical solution

calculated temperature



Numerical approach (3)
Time: 20.000000

Temperature
E97.245

272,93
48.62
24,31
Eo.ooo

Analytical solution calculated temperature



Numerical approach (3)

Time: 40.000000

Temperature
E97.245

Analytical solution

calculated temperature



Numerical approach (4)

3.80773

[X] Gnuplot

<ol ion 000010, suplot
* solution_000100, gnuplot’
* solution_000200, gnuplot’
* solution_000400, gnuplot’
" solution_001000, gnuplot!
" solution_602000, gnuplot'
" solution_004000,guplot’

u

u

17
7
7
7
7
17




The Schrodinger equation

P, . OV

This is the wave equation in quantum mechanics.
> h: Planck’s constant (divided by 27). h = 6.626070040 x 10>
> m : mass of a particle
» V : potential energy of the particle

> the function W is complex and its absolute square |W|? is proportional to
the position probability of the particle.



Maths, hairstyle and history (continued)

S
Erwin Rudolf Josef Alexander Schrodinger (1887-1961)
Austrian born physicist and theoretical biologist
Nobel Prize in Physics in 1933



Maths, hairstyle and history (continued)

S
Erwin Rudolf Josef Alexander Schrodinger (1887-1961)
Austrian born physicist and theoretical biologist
Nobel Prize in Physics in 1933

"I do not like quantum mechanics,
and | am sorry | ever had anything to do with it.”



"Anyone who is not shocked by quantum theory has not understood it."”
Niels Bohr

"If you think you understand quantum mechanics, you don’t understand
quantum mechanics.”
Richard Feynman



Schrodinger's cat

Schrédinger's cat: a cat, a flask of poison, and a &
radioactive source are placed in a sealed box. If an internal
monitor detects radioactivity (i.e., a single atom decaying),
the flask is shattered, releasing the poison that kills the cat.
The Copenhagen interpretation of quantum mechanics
implies that after a while, the cat is simultaneously alive and
dead. Yet, when one looks in the box, one sees the cat
either alive or dead, not both alive and dead. This poses the
question of when exactly quantum superposition ends and
reality collapses into one possibility or the other.



The Schrddinger equation (2)

2o, . OV

We separate space and time variables as follows :

V= ¢(X,y,2) T(t)



The Schrddinger equation (2)

2o, . OV

We separate space and time variables as follows :
V= ¢(x,y,z)T(t)
Substituting and dividing by ¢ T gives :

WP 1_, .
v V=
5 ¢V ¢+ ih

10T
Tor F



The Schrddinger equation (2)

2o, aw

We separate space and time variables as follows :
V= ¢(x,y,z)T(t)

Substituting and dividing by ¢ T gives :

w1 10T
__ = V= =E
2m qSV o+ hT ot
The time equation writes
OT LT g
ot h

and we can integrate to obtain

T(t) _ efl’Et/ﬁ



The Schrddinger equation (2)

2o, . OV

We separate space and time variables as follows :
V= ¢(x,y,z)T(t)

Substituting and dividing by ¢ T gives :

1, 10T
ama Y OHV =i
The time equation writes
oT | ET _ |
ot ho
and we can integrate to obtain
T(t) _ efl’Et/ﬁ

The time-independent Schrodinger equation is then

h2

m

V2p+ Vo =Eg



The Schrodinger equation (3)

Time-independent Schrédinger equation

g als t
wvon E. Schriédinger.
(Erste Mitteilung.)

§1. Tn dieser Mitteilung mochte ich zuniichst an dem ein-
fachsten Fall des (nichtrelativistischen und ungestbrten) Wasser-
stoffatoms zeigen, da8 dio tibliche Quantisierungsvorschrift sich
durch cine andere Forderung ersetzen 1at, in der kein Wort
von ganzen Zshlen mehr vorkommt. Vielmehr ergibt sich
dio Ganzzahligkeit auf dicsolbe matirliche Art, wie etwa die
Ganzzakligkeit der Knotenzall einer schwingenden Saite. Die
neuo Auffassung ist verallgemeinerungsfihig und ribrt, wie ich
glaube, sohr tief an das wahre Wesen der Quantenvorschriften.

Dio tibliche Form der letatoren kniipft an die Hamil-
tonsche partielle Differentislgleichung an:

88
) #(g a_q) =I.
Es wird von dieser Gleichung cine Lisung gesucht, welche
sich darstallt als Summe von Funktionen je ciner einzigen der
unabhiingigen Variablen g.

Wir fihren nun fiir § eine neue unbekannte y ein derart,
daB +p als ein Produkt von eingriffigen Funktionen der einzelnen
Koordinaten erscheinen wirde. D.h. wir setzen
@) 8=Klgy.

Die Konstante X muB aus dimensioncllen Griinden eingofithrt

werden, sie hat die Dimension einer Pirkung. Damit erhalt man

. K dy

) 11(,?W)=EA

Wir suchen nun nicht eine Lisung dor Gleichung (1), sondern

wir stellen folgende Forderung. Gleichung (1) 1aBt sich bei
igung dor ichkeit stets, bei Beriick-

sichtigung derselben wenigstens dann, wenn es sich um das Fin-

handelt, auf die Gestalt bringen: isch

Annalen der Physik, vol. 385, Issue 13, p437, 1926.



The Schrédinger equation (4)

For a one-dimensional problem and with V =0 :

or,

12 d*¢

—— =Y —F¢

2m dx?

ﬁ n 2mE
dx?2 h?2

¢=0

we pose k? = 2mE/FL2 and the general solution writes :

W, ) = 6() T(t) = {

sin kx
cos kx

} o Et/h



The Schrodinger equation - Example (1)

Example : Particle in a box (V =0o0n [0,L], ¥ =0 at x =0, L Vt)
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The Schrodinger equation - Example (1)

Example : Particle in a box (V =0o0n [0,L], ¥ =0 at x =0, L Vt)
We start from

W(x, t) = ¢(x) T(t) = { sin kx } JiEen

cos kx
» WU(x =0,t) = 0 requires the sine solution :

W(x,t) = ¢(x)T(t) = sin kx o iEt/N



The Schrodinger equation - Example (1)

Example : Particle in a box (V =0o0n [0,L], ¥ =0 at x =0, L Vt)
We start from

W(x, t) = ¢(x) T(t) = { sin kx } JiEen

cos kx
» WU(x =0,t) = 0 requires the sine solution :
W(x,t) = ¢(x)T(t) = sin kx e E/"
> VU(x =L, t) =0 requires
k=nn/L
which leads to
i P
e
= In quantum mechanics, the energy of a particle traped between 0 and L

can have only a discrete set of values called eigenvalues : the energy is
quantised.




The Schrodinger equation - Example (2)

The basis functions are then :

.o hmx _;
Y, (x,t) =sin I Ent/h



The Schrodinger equation - Example (2)

The basis functions are then :

W, (x,t) = sin 17X T X e ~iEnt/h

The general solution is then a linear combination these :

V(x,t) = Zb sin X g—iEnt/h



Numerical benchmarking

The heat transport equation writes :

v (2L v vT | =v. (k9 T)+ H
ot ~—— —_—
adv. diff. prod.



Numerical benchmarking

The heat transport equation writes :

PCp 8—T—&—V-VT =V - (kVT)
S—— ———

H
ot +

adv. diff. prod.

This translates as follows in my geodynamics numerical code :
Ka3D=matmul(NvectTstar3D,matmul{vel3D,Bmat3D) )+rho+hcapa+IxW
Kc3D=matmul(BmatT3D,Bmat3D)+hcond+JxW
KK3D=(Ka3D+Kc3D)

M3D=matmul(NvectT3D,Nvect3D):*rhoxhcapa*IxW
F3D=N3D(:,iq)*JxW+hprod

Ael=Ael+(M3D+KK3D+alphaT+dt)
Bel=Bel+matmul(M3D-KK3D*(1.d@-alphaT)+dt,temp(1:8))+F3D+dt



Numerical benchmarking (2)

Programming errors are easy to make and hard to track/find!
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Numerical benchmarking (2)

Programming errors are easy to make and hard to track/find !

— need to run the code over typical problems of which we know the analytical
solution

» wall diffusion (1D)
» cone diffusion (2D)



1D diffusion benchmark (1)

T

» system with initial uniform temperature of 0 heated from below.

DA



1D diffusion benchmark (1)

T

» system with initial uniform temperature of 0 heated from below
> temperature at the top of the system is set to 0.

> imposed temperature at the bottom is 1.

DA



1D diffusion benchmark (1)

v vV Vv VY

T

system with initial uniform temperature of 0 heated from below.
temperature at the top of the system is set to 0.
imposed temperature at the bottom is 1.

The analytical solution, in a T — y-coordinate system, is,

y
2v/ Kkt

where y is the distance from the bottom to the top of the system, T} is the
temperature imposed at the bottom and T; is the temperature at the top.

Tanalytical = erfc( )(Tb - Tt) + Tt

u]
o)
I
i
it
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1D diffusion benchmark (2)

Computed temperature profiles at

successive timesteps :

HWe = 000
fwe = 1000

1
L

=

"W = 200
" e = 200
"W = |00
" e = |00

[
ES
u

1

e = |
" we = |

1
J-u
1
™
IS

T

®

-0s

1swbsLgms




2D diffusion benchmark (1)

» domain is unit square [0,1] x [0,1]



2D diffusion benchmark (1)

» domain is unit square [0, 1] x [0, 1]

» The initial temperature profile is placed in the centre of the domain
(Xc, yc), and we observe how it diffuses in time. (initial Gaussian
temperature profile).



2D diffusion benchmark (1)

» domain is unit square [0, 1] x [0, 1]

» The initial temperature profile is placed in the centre of the domain
(Xc, yc), and we observe how it diffuses in time. (initial Gaussian
temperature profile).

» The diffusion observed should be described by the analytical solution given
by the Gaussian function

(x = %)+ (v — yc)2>

to
T(th?t):?exp (_ Akt



2D diffusion benchmark (2)

The temperature field gradually decreases in height and broadens in width.

150 . : . . : . : :
145} |
® Tn,1
140 Tas00
135l T 500

Temperature
o o
) [}
o [=}
T T
1 1

jay
]
=]
T
1
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