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the diffusion equation (1)

The heat transport equation writes :

ρcp

∂T
∂t

+ v ·∇T︸ ︷︷ ︸
adv.

 = ∇ · (k∇T )︸ ︷︷ ︸
diff .

+ H︸︷︷︸
prod.

Assume :

I no advection (v = 0)

I no radiogenic heat production (H = 0)

Then the temperature field must verify :

ρcp
∂T

∂t
= ∇ · (k∇T )

If k = constant , then it is equivalent to solve

∂T

∂t
= α2∇2T

where α2 = k/ρcp is the heat diffusivity.
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the diffusion equation (2)

Partial separation of variables into a space equation and a time equation :

T (x , y , z , t) = θ(x , y , z)Φ(t)

We substitute into the diffusion equation :

θ(x , y , z)
∂Φ

∂t
= Φ(t) α2∇2θ

We further divide by θΦ to get :

1

α2

1

Φ

∂Φ

∂t
=

1

θ
∇2θ

I the left side is a function of time t

I the right side is a function only of the space variables x , y , z

→ both sides are the same constant
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the diffusion equation (3)

We obtain

1

α2

1

Φ

∂Φ

∂t
= −k2

1

θ
∇2θ = −k2

or,

∂Φ

∂t
+ k2α2Φ = 0 (1)

∇2θ + k2θ = 0 (2)

Eq(2) is the Helmholtz equation.
Eq(1) can be integrated :

Φ(t) = e−k2α2t

(as t increases the temperature of a body cannot increase to infinity)
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Maths, hairstyle and history (continued)

Hermann Ludwig Ferdinand von Helmholtz (1821-1894)
German physician, physicist

Whoever in the pursuit of science, seeks after immediate practical utility may
rest assured that he seeks in vain.
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Helmholtz Resonators (1)

I These resonators were developed for picking out particular frequencies
from a complex sound.

I They consists of a body to contain a volume of air, a hole or neck in
which a slug of air can vibrate back and forth, and a slender nipple that
can be held in the ear canal (or, today, connected to a sound level meter).

I The enclosed volume of air acts as a spring connected to the mass of the
slug of air, and vibrates at a frequency dependent on the density and
volume of the air and the mass of the slug of air in the neck.

⇒ Fourier analysis ! !

http ://physics.kenyon.edu/EarlyApparatus/Rudolf Koenig Apparatus/Helmholtz Resonator/Helmholtz Resonator.html
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Helmholtz Resonators (2)

”Helmholtz’s large apparatus for compounding timbres of 10 harmonics ... 1,500 francs”, 1889 Koenig catalogue

I The ten electrically-driven tuning forks, each facing a Helmholtz resonator
tuned to the same frequency, run continuously, but produce little sound.

I Pressing one of the keys moves the dull black shutter away from the hole
of the resonator, and the sound becomes quite loud.

I Rubber feet under the corners of the wooden stand keep the vibrations
from reaching the baseplate that runs under all ten of the tuning fork
systems.

⇒ Fourier synthesis ! !

http ://physics.kenyon.edu/EarlyApparatus/Rudolf Koenig Apparatus/Fourier Synthesis/Fourier Synthesis.html
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the diffusion equation - Example (1)

Let us consider a flow of heat through a slab of thickness L :

The slab has initially a steady-state temperature distribution with T = 0 at
x = 0 and T = 100 at x = L.

The faces of the slab are so large that we neglect end effects.
Heat flows only in the x direction
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the diffusion equation - Example (2)

We want to find the temperature for x ∈ [0, L] at all times.
We need to solve :

d2θ

dx2
+ k2θ = 0

which leads to

θ(x) =

{
sin kx
cos kx

and the general solution writes

T (x , t) = θ(x)Φ(t) =

{
sin kx
cos kx

}
e−k2α2t



the diffusion equation - Example (3)

T (x , t) = θ(x)Φ(t) =

{
sin kx
cos kx

}
e−k2α2t

I we discard the solution in cosine because T (0, t) = 0 :

T (x , t) = θ(x)Φ(t) = sin kx e−k2α2t

I we impose T (L, t) = 0 which leads to

k = nπ/L

The basis functions are then

Tn(x , t) = e−(nπα/L)2t sin
nπx

L

The solution to the problem writes :

T (x , t) =
∞∑

n=1

bnTn(x , t) =
∞∑

n=1

bne
−(nπα/L)2t sin

nπx

L
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the diffusion equation - Example (4)

Finally, at t = 0, we want T (x , 0) = 100x/L :

100

L
x =

∞∑
n=1

bn sin
nπx

L

This means finding the fourier sine series for function 100x/L on [0, L]. We
arrive at

bn =
200

π

(−1)n−1

n

and then

T (x , t) =
200

π

∞∑
n=1

(−1)n−1

n
e−(nπα/L)2t sin

nπx

L



Numerical approach (1)

Use ELEFANT code to solve the same problem.

Programming the analytical solution

T (x , t) =
200

π

∞∑
n=1

(−1)n−1

n
e−(nπα/L)2t sin

nπx

L

tt=0
do n=1,100
tt=tt+((-1)**(n-1))/dble(n) * exp(-time*(n*pi/Lx)**2)*sin(n*pi*x/Lx)
end do

tt=tt*200.d0/pi
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Numerical approach (2)

film



Numerical approach (3)



Numerical approach (3)



Numerical approach (3)



Numerical approach (3)



Numerical approach (3)



Numerical approach (4)



The Schrödinger equation

− ~2

2m
∇2Ψ + VΨ = i~∂Ψ

∂t

This is the wave equation in quantum mechanics.

I ~ : Planck’s constant (divided by 2π). h = 6.626070040× 1034

I m : mass of a particle

I V : potential energy of the particle

I the function Ψ is complex and its absolute square |Ψ|2 is proportional to
the position probability of the particle.



Maths, hairstyle and history (continued)

Erwin Rudolf Josef Alexander Schrödinger (1887-1961)
Austrian born physicist and theoretical biologist

Nobel Prize in Physics in 1933

”I do not like quantum mechanics,
and I am sorry I ever had anything to do with it.”
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”Anyone who is not shocked by quantum theory has not understood it.”
Niels Bohr

”If you think you understand quantum mechanics, you don’t understand
quantum mechanics.”
Richard Feynman



Schrödinger’s cat



The Schrödinger equation (2)

− ~2

2m
∇2Ψ + VΨ = i~∂Ψ

∂t

We separate space and time variables as follows :

Ψ = φ(x , y , z)T (t)

Substituting and dividing by φT gives :

− ~2

2m

1

φ
∇2φ+ V = i~ 1

T

∂T

∂t
= E

The time equation writes
∂T

∂t
+ i

ET

~
= 0

and we can integrate to obtain

T (t) = e−iEt/~

The time-independent Schrödinger equation is then

− ~2

2m
∇2φ+ Vφ = Eφ
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The Schrödinger equation (3)

Time-independent Schrödinger equation :

Annalen der Physik, vol. 385, Issue 13, p437, 1926.



The Schrödinger equation (4)

For a one-dimensional problem and with V = 0 :

− ~2

2m

d2φ

dx2
= Eφ

or,
d2φ

dx2
+

2mE

~2
φ = 0

we pose k2 = 2mE/~2 and the general solution writes :

Ψ(x , t) = φ(x)T (t) =

{
sin kx
cos kx

}
e−iEt/~



The Schrödinger equation - Example (1)

Example : Particle in a box (V = 0 on [0,L], Ψ = 0 at x = 0, L ∀t)

We start from

Ψ(x , t) = φ(x)T (t) =

{
sin kx
cos kx

}
e−iEt/~

I Ψ(x = 0, t) = 0 requires the sine solution :

Ψ(x , t) = φ(x)T (t) = sin kx e−iEt/~

I Ψ(x = L, t) = 0 requires
k = nπ/L

which leads to

En =
~2

2m

n2π2

L2

⇒ In quantum mechanics, the energy of a particle traped between 0 and L
can have only a discrete set of values called eigenvalues : the energy is
quantised.
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The Schrödinger equation - Example (2)

The basis functions are then :

Ψn(x , t) = sin
nπx

L
e−iEnt/~

The general solution is then a linear combination these :

Ψ(x , t) =
∞∑

n=1

bn sin
nπx

L
e−iEnt/~
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Numerical benchmarking

The heat transport equation writes :

ρcp

∂T
∂t

+ v ·∇T︸ ︷︷ ︸
adv.

 = ∇ · (k∇T )︸ ︷︷ ︸
diff .

+ H︸︷︷︸
prod.

This translates as follows in my geodynamics numerical code :
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Numerical benchmarking (2)

Programming errors are easy to make and hard to track/find !

→ need to run the code over typical problems of which we know the analytical
solution

I wall diffusion (1D)

I cone diffusion (2D)
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1D diffusion benchmark (1)

I system with initial uniform temperature of 0 heated from below.

I temperature at the top of the system is set to 0.

I imposed temperature at the bottom is 1.

I The analytical solution, in a T − y -coordinate system, is,

Tanalytical = erfc(
y

2
√
κt

)(Tb − Tt) + Tt

where y is the distance from the bottom to the top of the system, Tb is the
temperature imposed at the bottom and Tt is the temperature at the top.
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1D diffusion benchmark (2)

Computed temperature profiles at successive timesteps :



2D diffusion benchmark (1)

I domain is unit square [0, 1]× [0, 1]

I The initial temperature profile is placed in the centre of the domain
(xc , yc ), and we observe how it diffuses in time. (initial Gaussian
temperature profile).

I The diffusion observed should be described by the analytical solution given
by the Gaussian function

T (x , y , t) =
t0
t

exp

(
− (x − xc )2 + (y − yc )2

4κt

)
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2D diffusion benchmark (2)

The temperature field gradually decreases in height and broadens in width.


