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Introduction

I Laplace’s equation
∇2u = 0

I Poisson’s equation
∇2u = f (x , y , z)

I diffusion equation

∇2u =
1

α2

∂u

∂t

I wave equation

∇2u =
1

v 2

∂2u

∂t2

I Helmholtz equation
∇2u + k2F = 0

I Schrödinger equation

− ~2

2m
∇2Ψ + VΨ = i~∂Ψ

∂t
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The Laplace equation

∇2u = ∆u = 0

I no dependence on time, just on the spatial variables.

I Laplace Equation describes steady state situations such as :

I steady state temperature distributions
I steady state stress distributions
I steady state potential distributions (it is also called the potential equation
I steady state flows, for example in a cylinder, around a corner
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The Laplace equation (2)

In cartesian coordinates :

I 1D :
∂2u

∂x2
= 0

I 2D :
∂2u

∂x2
+
∂2u

∂y 2
= 0

I 3D :
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The Laplace equation (3)

Example 1 : (Maxwell’s equations)
The electric field is related to the charge density by the divergence relationship

∇ · E =
ρ

ε0

with

I E : electric field

I ρ : charge density

I ε0 : vacuum permittivity (=8.854187817620...× 10−12 Farads per metre)

The electric field is related to the electric potential by a gradient relationship

E = −∇V

In a charge-free region of space (ρ = 0), the potential is therefore related to
the charge density by Laplace equation

∇2V = 0
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The Laplace equation (4)

Example 2 :
The heat transport equation writes :

ρcp

∂T
∂t

+ v ·∇T︸ ︷︷ ︸
adv.

 = ∇ · (k∇T )︸ ︷︷ ︸
diff .

+ H︸︷︷︸
prod.

Assume :

I steady state (∂/∂t → 0)

I no advection (v = 0)

I no radiogenic heat production (H = 0)

Then the temperature field must verify :

∇ · (k∇T ) = 0

If k = constant , then it is equivalent to solve

∇2T = 0
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plate is infinite in y and z direction : ∂
∂y
→ 0 , → ∂

∂z
→ 0

⇒ T is a function of x only.
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Steady state temperature in 1D (2)

We have to solve :
d2T

dx2
= 0

with boundary conditions :

T (x1) = T1 T (x2) = T2

We integrate once :
dT

dx
= a

and another time :
T (x) = ax + b

We use the b.c. to determine a and b :

T (x1) = T1 = ax1 + b

T (x2) = T2 = ax2 + b

leading to a = T2−T1
x2−x1

and b = T1 − T2−T1
x2−x1

x1 and finally

T (x) =
T2 − T1

x2 − x1
(x − x1) + T1
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Steady-state temperature in a rectangular plate



Steady-state temperature in a rectangular plate (2)

The temperature satisfies the 2D Laplace equation inside the plate :

∂2T

∂x2
+
∂2T

∂y 2
= 0 (1)

We could try to solve the equation by using a tentative solution of the form :

T (x , y) = θ(x)Φ(y) (2)

We do not know the solution is of this form.

We substitute (2) into (1) and obtain :

Φ
∂2θ

∂x2
+ θ

∂2Φ

∂y 2
= 0

Dividing by θΦ gives :
1

θ

∂2θ

∂x2
+

1

Φ

∂2Φ

∂y 2
= 0
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Steady-state temperature in a rectangular plate (2)

1

θ

∂2θ

∂x2
+

1

Φ

∂2Φ

∂y 2
= 0

Separation of variables : we say that each term is a constant because the first
term is a function of x only and the second a function of y only.
We then write

1

θ

∂2θ

∂x2
= − 1

Φ

∂2Φ

∂y 2
= −k2

where k is called the separation constant.
This leads to

∂2θ

∂x2
+ k2θ = 0

∂2Φ

∂y 2
− k2Φ = 0

I The solution to the first one is θ(x) = sin kx or θ(x) = cos kx

I The solution to the second one is Φ(x) = ekx or Φ(x) = e−kx
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Steady-state temperature in a rectangular plate (3)

The general solution writes :

T (x , y) = θ(x)Φ(y) =

{
sin kx
cos kx

}{
eky

e−ky

}

We can now use the b.c. to find the solution to the Laplace equation.

I Since T → 0 when y →∞ then eky unacceptable.

I Since T = 0 when x = 0 then cos kx unacceptable.

so
T (x , y) = sin(kx) e−ky

We finally use T = 0 at x = 10 which leads to 10k = nπ, i.e. :

T (x , y) = sin(
nπx

10
) e−nπy/10
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Steady-state temperature in a rectangular plate (4)

Problem : the solution does not satisfy T (x , 0) = 100 !

A linear combination of solutions is still a solution !

Let’s find such a combination which satisfies the b.c. at y = 0 :

T (x , y) =
∞∑

n=1

bn sin(
nπx

10
) e−nπy/10

We impose then T (x , 0) = 100 :

100 =
∞∑

n=1

bn sin(
nπx

10
)
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We impose then T (x , 0) = 100 :

100 =
∞∑

n=1

bn sin(
nπx

10
)



Steady-state temperature in a rectangular plate (5)

100 =
∞∑

n=1

bn sin(
nπx

10
)

This is the Fourier sine series of f (x) = 100 with l = 10 (chapter 7.9 of Boas).

The coefficient bn is then given by

bn =
2

l

∫ l

0

f (x) sin
nπx

l
dx =

2

10

∫ l

0

100 sin
nπx

10
dx =

{
400/nπ odd n
0 even n

Finally ( !) :

T (x , y) =
400

π

(
e−πy/10 sin(

πx

10
) +

1

3
sin(

3πx

10
) e−3πy/10 + . . .

)



Steady-state temperature in a rectangular plate (5)

100 =
∞∑

n=1

bn sin(
nπx

10
)

This is the Fourier sine series of f (x) = 100 with l = 10 (chapter 7.9 of Boas).
The coefficient bn is then given by

bn =
2

l

∫ l

0

f (x) sin
nπx

l
dx =

2

10

∫ l

0

100 sin
nπx

10
dx =

{
400/nπ odd n
0 even n

Finally ( !) :

T (x , y) =
400

π

(
e−πy/10 sin(

πx

10
) +

1

3
sin(

3πx

10
) e−3πy/10 + . . .

)



Steady-state temperature in a rectangular plate (5)

100 =
∞∑

n=1

bn sin(
nπx

10
)

This is the Fourier sine series of f (x) = 100 with l = 10 (chapter 7.9 of Boas).
The coefficient bn is then given by

bn =
2

l

∫ l

0

f (x) sin
nπx

l
dx =

2

10

∫ l

0

100 sin
nπx

10
dx =

{
400/nπ odd n
0 even n

Finally ( !) :

T (x , y) =
400

π

(
e−πy/10 sin(

πx

10
) +

1

3
sin(

3πx

10
) e−3πy/10 + . . .

)



Steady-state temperature in a rectangular plate (6)

(n=1,3,5 and 7)



Numerical solution (1)

The heat transport equation writes :

ρcp

∂T
∂t

+ v ·∇T︸ ︷︷ ︸
adv.

 = ∇ · (k∇T )︸ ︷︷ ︸
diff .

+ H︸︷︷︸
prod.

Assume :

I no advection (v = 0)

I no radiogenic heat production (H = 0)

Then the temperature field must verify :

ρcp
∂T

∂t
= ∇ · (k∇T )︸ ︷︷ ︸

diff .

And at steady state (∂t = 0)

∇ · (∇T ) = 0
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Numerical solution (2)

film



Numerical solution (3)


