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» Poisson’s equation
Viu = f(x,y,z)
» diffusion equation
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» Helmholtz equation
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The Laplace equation

Vu=Au=0

» no dependence on time, just on the spatial variables.

> Laplace Equation describes steady state situations such as :

>

>
>
>

steady state temperature distributions

steady state stress distributions

steady state potential distributions (it is also called the potential equation
steady state flows, for example in a cylinder, around a corner
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The Laplace equation (3)

Example 1 : (Maxwell's equations)
The electric field is related to the charge density by the divergence relationship
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> p : charge density
> ¢o : vacuum permittivity (=8.854187817620... x 10~*? Farads per metre)
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Example 1 : (Maxwell's equations)
The electric field is related to the charge density by the divergence relationship

v E=L
€0

with
> E : electric field
> p : charge density
> ¢o : vacuum permittivity (=8.854187817620... x 10~*? Farads per metre)

The electric field is related to the electric potential by a gradient relationship

E=-VV

In a charge-free region of space (p = 0), the potential is therefore related to
the charge density by Laplace equation

vV =0
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The Laplace equation (4)

Example 2 :
The heat transport equation writes :

oT

- -VT | =V-(kVT H
pCP at -‘r‘V , ( )+\ ,
adv. diff. prod.

Assume :
> steady state (9/0t — 0)
> no advection (v = 0)
» no radiogenic heat production (H = 0)

Then the temperature field must verify :
V- (kVT)=0
If k = constant , then it is equivalent to solve

VT =0
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Steady state temperature in 1D (2)

We have to solve :
T

dx?

with boundary conditions :
T(x)=T1 T(x)=T2

We integrate once :

ar _
dx
and another time :
T(x)=ax+b
We use the b.c. to determine a and b :
T(Xl) =T1 = ax-+b
T(Xg) =T, = ax+b
leading to a = 2= and b= Ty — 2=T1x and finally
T, — T;
T(x)= 2 1(X*Xl)Jr T1

x2 — x1



Steady state temperature in 1D (3)

temperature profile
T1

| T2

x1 X2



Steady-state temperature in a rectangular plate
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Steady-state temperature in a rectangular plate (2)

The temperature satisfies the 2D Laplace equation inside the plate :

T  O°T

vl 87}/270 (1)

We could try to solve the equation by using a tentative solution of the form :
T(x,y) = 0(x)®(y) (2)
&We do not know the solution is of this form.

We substitute (2) into (1) and obtain :

o0 P
Paxe 05, =0
Dividing by 0® gives :
10°0  10°0
>+t =55 =0
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Separation of variables : we say that each term is a constant because the first
term is a function of x only and the second a function of y only.
We then write
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> The solution to the first one is 0(x) = sin kx or 6(x) = cos kx



Steady-state temperature in a rectangular plate (2)

10 100
0ox2 &gy
. we say that each term is a constant because the first

term is a function of x only and the second a function of y only.

We then write
v oo,
0ox2 b Oy?
where k is called the
This leads to )
00 2,
%) +k0=0
e,
— — kb =
Oy? 0

> The solution to the first one is 0(x) = sin kx or 6(x) = cos kx
kx

» The solution to the second one is ®(x) = e or ®(x) = e~
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Steady-state temperature in a rectangular plate (3)

The general solution writes :
sin kx e
T = oo = { S b 2L
We can now use the b.c. to find the solution to the Laplace equation.

> Since T — 0 when y — 0o then e unacceptable.

» Since T = 0 when x = 0 then cos kx unacceptable.

so
T(x,y) = sin(kx) e ¥

We finally use T = 0 at x = 10 which leads to 10k = nm, i.e. :

T(x,y) = sin(55) e "™/
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Let's find such a combination which satisfies the b.c. at y =0 :

T(x,y) = Z b sin(nl%x) e "my/10
n=1



Steady-state temperature in a rectangular plate (4)

&Problem : the solution does not satisfy T(x,0) = 100!

@A linear combination of solutions is still a solution!

Let's find such a combination which satisfies the b.c. at y =0 :
> nmx _
T _ by si nmy /10
() = 3 bsin( ) e

We impose then T(x,0) = 100 :

nmx

100 =) bysin(—~
L 10



Steady-state temperature in a rectangular plate (5)

100 = > b, sin(%
n=1

This is the Fourier sine series of f(x) = 100 with / = 10 (chapter 7.9 of Boas).
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Steady-state temperature in a rectangular plate (5)

100 = Z bnsin( 22X

This is the Fourier sine series of f(x) = 100 with / = 10 (chapter 7.9 of Boas).
The coefficient b, is then given by

/f smwd 2/1005mﬂd —{ 400/nm  odd n
10 0 even n

Finally (1) :

400 . .
Txy) = 22 (e 9in T

)+ sy )

10




Steady-state temperature in a rectangular plate (6)

1,3,5and 7)
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Numerical solution (1)

The heat transport equation writes :
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Numerical solution (1)

The heat transport equation writes :

C, 8—T+V-VT =V .- (kVT)+ H
PCp
ot ~—— —_—— =
adv. diff. prod.

Assume :
> no advection (v =0)
» no radiogenic heat production (H = 0)

Then the temperature field must verify :

oT

diff .

And at steady state (9; = 0)
V-(VT)=0



Numerical solution (2)

film



Numerical solution (3)

Analytical
Solution [ e N Time: 100.000000



