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new term, definition

Exercise for werkcollege

Homework

pay attention to this



What is a derivative ? ! ?

I In calculus, a branch of mathematics, the derivative is a measure of how a
function changes as its input changes.

I The derivative of a function at a chosen input value describes the best
linear approximation of the function near that input value.

I For a real-valued function of a single real variable, the derivative at a point
equals the slope of the tangent line to the graph of the function at that
point.

(The slope of the tangent line is equal to the derivative of the function at
the marked point)
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What is a derivative - Leibniz’s notation

The first derivative is denoted by

dy

dx
=

df

dx
(x) =

d

dx
f (x)

Higher derivatives are expressed using the notation

dny

dxn
,

dnf

dxn
(x), or

dn

dxn
f (x)

for the nth derivative of y = f (x) (with respect to x). These are abbreviations
for multiple applications of the derivative operator. For example,

d2y

dx2
=

d

dx

(
dy

dx

)
.



What is a derivative - other notation

I Lagrange’s notation

(f ′)′ = f ′′ and (f ′′)′ = f ′′′

I Newton’s notation (time derivatives)

ẏ and ÿ

I Euler’s notation
Dx y or Dx f (x)



Derivatives of elementary functions (1)

I Derivatives of powers : if
f (x) = x r ,

where r is any real number, then

f ′(x) = rx r−1

wherever this function is defined. For example, if f (x) = x1/4, then

f ′(x) = (1/4)x−3/4

I Exponential and logarithmic functions

d

dx
ex = ex d

dx
ax = ln(a)ax

d

dx
ln(x) =

1

x
, x > 0

d

dx
loga(x) =

1

x ln(a)
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Derivatives of elementary functions (2)

I Trigonometric functions :

d

dx
sin(x) = cos(x).

d

dx
cos(x) = − sin(x).

d

dx
tan(x) =

1

cos2(x)
= 1 + tan2(x).

I Inverse trigonometric functions :

d

dx
arcsin(x) =

1√
1− x2

.

d

dx
arccos(x) = − 1√

1− x2
.

d

dx
arctan(x) =

1

1 + x2
.



Rules for finding the derivative

I Constant rule : if f (x) is constant, then

f ′ = 0

I Sum rule :
(af + bg)′ = af ′ + bg ′

for all functions f and g and all real numbers a and b.

I Product rule :
(fg)′ = f ′g + fg ′

for all functions f and g .

I Quotient rule : (
f

g

)′
=

f ′g − fg ′

g 2

for all functions f and g where g 6= 0.

I Chain rule : If f (x) = h(g(x)), then

f ′(x) = h′(g(x)) · g ′(x)
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Spatial derivatives in 1D, 2D, 3D (1)

I in 1D, one space dimension :
∂

∂x
I in 2D, one space dimension :

∂

∂x
,

∂

∂y

I in 3D, one space dimension :

∂

∂x
,

∂

∂y
,

∂

∂z

⇒ more concise notation : ∇ (’nabla’ operator, or ’gradient’)



Spatial derivatives in 1D, 2D, 3D (2)

For instance, in 3D the gradient operator writes :

∇ =


∂
∂x

∂
∂y

∂
∂z


It is therefore a vector.
The temperature gradient (i.e. the spatial derivative of the temperature field)
writes :

∇T =


∂T
∂x

∂T
∂y

∂T
∂z


The gradient operator is applied to a scalar and the result is a vector.



Spatial derivatives in 1D, 2D, 3D (2)

If one now takes the scalar product of the gradient with a vector
v = (vx , vy , vz ), one gets a scalar :

∇ · v =


∂
∂x

∂
∂y

∂
∂z

 ·


vx

vy

vz

 =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

The ∇· operator is called the divergent operator. It applies on vectors and
gives a scalar.



Spatial derivatives in 1D, 2D, 3D (2)

It is possible to combine both gradient and divergent operator in order to get a
second-order operator :

∆ = ∇ ·∇ =


∂
∂x

∂
∂y

∂
∂z

 ·


∂
∂x

∂
∂y

∂
∂z

 =
∂2

∂x2
+

∂2

∂y 2
+

∂2

∂z2

∆ is called the Laplacian operator. It the ”divergence of the gradient”.
For instance, the Laplacian of the temperature field T (x , y , z) writes :

∆T =
∂2T

∂x2
+
∂2T

∂y 2
+
∂2T

∂z2



Maths, hairstyle and history (continued)

Pierre-Simon, marquis de Laplace (1749-1827),
French mathematician and astronomer



Introduction

I An equation containing derivatives is called a differential equation

I If it contains partial derivatives, it is called Partial Differential Equation
(PDE)

I Otherwise it is called an Ordinary Differential Equation (ODE)
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Example (1)

I Newton’s second law. In vector form, it writes :∑
F = ma

Writing the acceleration v as dv/dt, where v is the velocity, we get∑
F = m

dv

dt

This is in fact a set of ODEs (one for each direction in space) :

Fx = m
du

dt

Fy = m
dv

dt

Fz = m
dw

dt

where v = (u, v ,w).



Example (2) - heat equation

The rate at which heat Q escapes through a window or from a hot water pipe
is proportional to the area A and to the rate of change of temperature with
distance in the direction of the flow of heat :

dQ

dt
= kA

dT

dx

where k is called the coefficient of thermal conductivity and is a property of the
material.



Introduction (2)

⇒ Differential equations are oblivious :

I from astrophysics to quantum mechanics

I from vibrating strings and membranes to population growth

I in fluid mechanics, in solid mechanics, geophysics ...



Introduction (3)

They come in all shapes, colours and sizes :)

Smoothed Particle Hydrodynamics model for phase separating fluid mixtures, C.

Thieulot, P. Español and L.P.B.M.Janssen, Phys. Rev. E 72, 016714 (2005).



Definitions

I The order of a differential equation is the order of the highest derivative in
the equation.

y ′ + xy 2 = 1

xy ′ + y = ex

are first-order ODEs.

m
dr 2

dt2
= −kr

is a second-order ODE.

I A linear ODE is one of the form :

a0y + a1 + y ′ + a2y ′′ + a3y ′′′ + ... = b

where the a’s and b are either constants or functions of x .

y ′ = cot y (not linear)

yy ′ = 1 (not linear)

(y ′)2 = xy (not linear)



Definitions (2)

I A solution of a differential equation (in the variables x and y) is a relation
between x and y which, if substituted into the differential equation, gives
and indentity.

I Example 1 : the relation y = sin x + C is a solution of the differential
equation y ′ = cos x .

I Example 2 : The equation y ′′ = y has solutions y = ex or y = e−x or

y = Aex + Be−x .



Definitions (3)

I Any linear differential equation of order n has a solution containing n
independent arbitrary constants, from which all solutions of the differential
equation can be obtained by letting the constants have particular values.
This solution is called the general solution of the linear differential
equation.

This may not be true for nonlinear equations.
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Example 3

Question : Find the distance which an object falls under gravity in t seconds if
it starts from rest
We start with Newton’s second law

ma = F

where m is the mass of the object. The gravitational acceleration is g, so that
the force F is given by mg.

The acceleration a writes :

a =
dv

dt
=

d2x

dt2

Let z be the distance the object has fallen in time t, and let us assume that the
movement of the object occurs along the vertical z axis. We then have to solve

d2z

dt2
= gz
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Example 3

We integrate one time and get

dz

dt
= gz t + C = gz t + v0

and we integrate a second time :

z(t) =
1

2
gz t2 + v0t + z + 0

Two important things :

I the object starts from rest

v0 = v(t = 0) = 0

I z(t) is the distance the object has fallen at time t

z0 = z(t = 0) = 0

Finally :

z(t) =
1

2
gz t2
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Example 4 :

Question : Find the solution of y ′′ = y which passes through the origin and
through the point (ln 2, 3/4).

We have already verified that y = Aex + Be−x is a solution of the differential
equation. If the given points satisfy the equation of the curve, then

0 = A + B
3

4
= Ae ln 2 + Be− ln 2

which leads to write

A + B = 0 (1)

2A + B/2 = 3/4 (2)

⇒ A = −B = 1/2 and

y(x) =
1

2
(ex − e−x ) = sinh x
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Definitions (4)

I The given conditions which are to be satisfied by the particular solution
are called boundary conditions.

I When they are conditions at t = 0, they may be called initial conditions
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Separable equations

When we can write

y ′ =
dy

dx
= f (x)

as
dy = f (x)dx

the equation is called separable.

In that case

y ′ =
dy

dx
= f (x) ⇒ dy = f (x)dx ⇒ y =

∫
f (x)dx

Solving the ODE is carried out by integrating each side of the equation.
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Separable equations - Example 1

The rate at which a radioactive substance decays is proportional to the
remaining number of atoms. If there are N0 atoms at t = 0, find the number at
time t.

This translates as
dN

dt
= −λN

where λ is called the decay constant. It also writes :

dN

N
= −λdt

Integrating both sides we get

ln N = −λt + const

Since N(t = 0) = N0, then const = N0 and finally

N(t) = N0e−λt
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Separable equations - Example 2

Solve the differential equation

xy ′ = y + 1

To separate variables we divide both sides by x(y + 1) :

y ′

y + 1
=

1

x

Recall that y ′ = dy
dx

so that :
dy

y + 1
=

dx

x

and then ∫
1

y + 1
dy =

∫
1

x
dx

Carrying out the integration :

ln(y + 1) = ln x + C = ln x + ln a = ln(ax)

finally :
y + 1 = ax
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Nonlinear differential equations

sometimes the coefficients of an ODE are not constant, and they
themsleves depend on the solution.
⇒ such ODEs are called nonlinear ODEs.

Example : Stokes equation

−∇p + µ∆v = ρg

Often µ = fct(T , p, dv
dt

) and ρ = fct(T , z)

Sir George Gabriel Stokes (1819-1903)



Nonlinear differential equations

sometimes the coefficients of an ODE are not constant, and they
themsleves depend on the solution.
⇒ such ODEs are called nonlinear ODEs.

Example : Stokes equation

−∇p + µ∆v = ρg

Often µ = fct(T , p, dv
dt

) and ρ = fct(T , z)

Sir George Gabriel Stokes (1819-1903)



Linear first-order equations (1)

I a first-order equation contains y ′ but no higher derivative.

I a linear first-order equation means one which can be written in the form

y ′ + Py = Q

where P and Q are functions of x .



Linear first-order equations (2)

I Let’s start with an easier case : Q = 0

y ′ + Py = 0

This is equivalent to
dy

dx
= −Py

The equation is separable :
dy

y
= −Pdx

ln y = −
∫

P dx + C

y = e−
∫

P dx+C = Ae−
∫

P dx

Let us simplify the notation and write

I =

∫
P dx or,

dI

dx
= P



Linear first-order equations (2)

I Let’s solve the full ODE : y ′ + Py = Q

We know that y = Ae−I is solution of y ′ + Py = 0.
Let us compute

d

dx
(y e I ) = y ′e I + y

d

dx
e I

= y ′e I + ye I dI

dx

= y ′e I + ye I P

= (y ′ + yP)e I

= Qe I

So

ye I =

∫
Qe I dx + const

or,

y(x) = e−I

(∫
Qe I dx + const

)
with I =

∫
P dx

This is the general solution, up to a constant.



Example - A touch of radiometric dating ...

Radium decays to radon which decays to polonium



Example - A touch of radiometric dating ... (2)

Question : If at t = 0 a sample is pure radium, how much radon does it contain
at time t ?

Let

N0 = number of radium atoms at t = 0
N1 = number of radium atoms at time t
N1 = number of radon atoms at time t
λ1 = decay constant of radium
λ2 = decay constant of radon

We have for radium :
dN1

dt
= −λ1N1

or, as we have seen before : N1(t) = N0e−λ1t .
The rate at which radon is created is the rate at which radium is decaying, i.e.
λ1N1. But radon is decaying at the rate λ2N2. Hence we have :

dN2

dt
= λ1N1 − λ2N2
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Example - A touch of radiometric dating ... (3)

dN2

dt
= λ1N1 − λ2N2

rewrites
dN2

dt
+ λ2N2 = λ1N1

and is of the form
y ′ + Py = Q

We solve it as follows :

I =

∫
Pdt =

∫
λ2dt = λ2t
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Example - A touch of radiometric dating ... (4)

and using

y(x) = e−I

∫
Qe I dx + const

we can write

N2(t) = e−λ2t

(∫
λ1N1eλ2tdt + const

)
= e−λ2t

(∫
λ1N0eλ1teλ2tdt + const

)
= e−λ2t

(
λ1N0

λ2 − λ1
e(λ2−λ1)t + const

)

valid for λ1 6= λ2.
Finally, N2(t = 0) = 0 so that

const = − λ1N0

λ2 − λ1

and

N2(t) =
λ1N0

λ2 − λ1
(e−λ1t − e−λ2t)



Other methods for 1st order equations (1)

The Bernoulli equation

The differential equation
y ′ + Py = Qy n

where P and Q are functions of x is known as the Bernoulli equation.

We make the change of variable z = y 1−n. Then z ′ = (1− n)y−ny ′ and the
differential equation reqrites :

z ′ + (1− n)Pz = (1− n)Q

This is now a first-order linear equation which we can solve.
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Other methods for 1st order equations (2)

Exact equations

Let us recall that the differential of F (x , y) writes :

dF =
∂F

∂x
dx +

∂F

∂y
dy

The expression P(x , y)dx + Q(x , y)dy is an exact differential (i.e. a differential
of a function F) if

∂P

∂y
=
∂Q

∂x

If this is verified, the solution of Pdx + Qdy = 0 is then

F (x , y) = const
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Other methods for 1st order equations (2)

Example :

I The equation xdy − ydx = 0 is not exact.

I The equation
1

x2
(xdy − ydx) = 0

is exact.

P = −y/x2 Q =
1

x
→ ∂P

∂y
=
∂Q

∂x
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Other methods for 1st order equations (3)

A homogeneous function of x and y of degree n means a function which can be
written as xnf (y/x).
An equation of the form

P(x , y)dx + Q(x , y)dy = 0

where P and Q are homogeneous functions of the same degree is called
homogeneous.

If we divide two homogeneous functions of the same degree, the xn factors
cancel and we have a function of y/x :

y ′ =
dy

dx
= −P

Q
= f (

y

x
)

If y ′ can be written as a function of y/x , we make the change of variable
v = y/x and solve for v .
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homogeneous.
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I So far, we have been considering first-order equations.

I While important, many physical phenomena lead to second-order ODEs or
PDEs

I such second-order equations are of the form

a2
d2y

dx2
+ a1

dy

dx
+ a0y = 0
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Second-order linear equations with constant coeffs. and zero rhs

Example : solve the equation

y ′′ + 5y ′ + 4y = 0

I the coefficients a0, a1, a2 are constant

I the right-hand side is zero

It is convenient to let D stand for d/dx so that

Dy =
dy

dx
D2y = D · Dy =

d

dx

dy

dx
=

d2y

dx2
= y ′′

Expressions involving D, such as D + 1 or D2 + 5D + 4 are called differential
operators

y ′′ + 5y ′ + 4y = 0 → (D2 + 5D + 4)y = 0
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Second-order linear equations with constant coeffs. and zero rhs (2)

(D2+5D +4)y = 0 → (D +1)(D +4)y = 0 or (D +4)(D +1)y = 0

ony possible if a0,1,2 are constants

Let us consider the simpler equations

(D + 4)y = 0 (D + 1)y = 0

or,
dy

dx
+ 4y = 0

dy

dx
+ y = 0

Their respective solutions are

y(x) = C1e−4x y(x) = C2e−x

If (D + 1)y = 0 then y is solution of (D2 + 5D + 4)y = 0
If (D + 4)y = 0 then y is solution of (D2 + 5D + 4)y = 0
Since the two solutions y(x) = C1e−4x and y(x) = C2e−x are linearly
independent, a linear combination of them contains two arbitrary constants and
so is the general solution :

y(x) = C1e−4x + C2e−x
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Second-order linear equations with constant coeffs. and zero rhs (3)

The equation D2 + 5D + 4 = 0 is called the auxiliary equation.

Question : can we solve all second-order linear equations with constant
coefficients and zero right-hand side by this method ?

Let us assume that the equation can be written (D − a)(D − b)y = 0 with
a 6= b. Then

y(x) = c1eax + c2ebx

is the general solution of the equation.
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a 6= b. Then

y(x) = c1eax + c2ebx

is the general solution of the equation.



Second-order linear equations with constant coeffs. and zero rhs (4)

Special case : equal roots of the auxiliary equation

In the case where tha auxiliary equation writes (D − a)2 = 0, there is only one
root and the previous theorem does not apply.
In this case the general solution writes :

y = (Ax + B)eax



Second-order linear equations with constant coeffs. and zero rhs (4)

Special case : complex conjugate roots of the auxiliary equation

Supose the roots of the auxiliary equation are α± iβ. These are unequated
roots so the general solution of the equation is

y(x) = c1e(α+iβ)x + c2e(α−iβ)x

This can be also re-written as

y(x) = eαx (c3 sinβx + c4 cosβx)

or,
y(x) = c5eαx sin(βx + γ)



Second-order linear equations with constant coeffs. and zero rhs (6)

Example 1 : Solve the differential equation

y ′′ − 6y + 9y = 0

The auxiliary equation writes

D2 − 6D + 9 = 0

or, (D − 3)(D − 3)y = 0. There is only one root to the auxiliary equation so
the general solution writes

y(x) = (Ax + B)e3x
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Second-order linear equations with constant coeffs. and zero rhs (7)

Example 2 : A mass m oscillates at the end of a spring where k is the spring
constant.
The force exerted on the mass by the spring is proportional to displacement so
Newton’s second law writes

m
d2y

dt2
= −ky

which is also

D2y + ω2y = 0 ω2 =
k

m

where D = d/dt. The roots of the auxiliary equation are ±iω.
The solution can be written in any of the three forms :

y(x) = Ae iωt + Be−iωt

= c1 sinωt + c2 cosωt

= c sin(ωt + γ)

The object executes a simple harmonic motion.



I what if now the second-order equation is of the form

a2
d2y

dx2
+ a1

dy

dx
+ a0y = f (x)



Second-order linear equations with constant coeffs. and non-zero rhs (1)

Example : Consider the equation

(D2 + 5D + 4)y = cos 2x

We already know the solution of the equation with the right-hand side equal to
zero :

yc (x) = Ae−x + Be−4x

This solution is called the complementary function.
One can also verify that yp = 1

10
sin 2x is a particular solution.

We then have
(D2 + 5D + 4)yp = cos 2x

(D2 + 5D + 4)yc = 0

so that
(D2 + 5D + 4)(yp + yc ) = cos 2x + 0 = cos 2x

One can then say that y(x) = yp + yc is the general solution since it contains
two independent arbitrary constants.
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Second-order linear equations with constant coeffs. and non-zero rhs (2)

The general solution of an equation of the form

a2
d2y

dx2
+ a1

dy

dx
+ a0y = f (x)

is
y = yc + yp

where the complementary function yc is the general solution of the
homogeneous equation and yp is a particular solution.



Second-order linear equations with constant coeffs. and non-zero rhs (3)

Example : Consider

y”− 6y ′ + 9y = 8ex

I We suspect that a multiple of ex is a solution of this equation

I It is indeed easy to verify that y = 2ex is a solution.

Example : Consider now

y” + y ′ − 2y = ex

We fail to find a particular solution since ex satisfies the homogeneous eq

y” + y ′ − 2y = 0

⇒ how can we find particular solutions in a more systematic way ?
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Second-order linear equations with constant coeffs. and non-zero rhs (4)

y” + y ′ − 2y = ex

can be written as
(D − 1)(D + 2)y = ex

Let u = (D + 2)y . The the differential equation becomes :

(D − 1)u = ex or, u′ − u = ex

This is a first-order linear differential equation which we know how to solve :

I =

∫
(−1)dx = −x

ue−x =

∫
e−x ex dx = x + c1

u = xex + c1ex
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Second-order linear equations with constant coeffs. and non-zero rhs (5)

Then, the differential equation for y becomes

(D + 2)y = xex + c1ex

or,
y ′ + 2y = xex + c1ex

This again is a linear first-order equation which we solve as follows

I =

∫
2dx = 2x

ye2x =

∫
e2x (xex + c1ex )dx =

1

3
xe3x − 1

9
e3x +

1

3
c1e3x + c2

or,

y =
1

3
xex + c ′1ex + c2e−2x

We have obtained the general solution all in one process rather than finding the
complementary function plus a particular solution in two separate processes.
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Second-order linear equations with constant coeffs. and non-zero rhs (6)

Special cases :

I exponential rhs :
(D − a)(D − b)y = kecx

(see example 5 p420)

I exponential × polynomial rhs :

(D − a)(D − b)y = ecx Pn(x)

where Pn(x) is a n-order polynomial (see examples 7,8 p422).

I sine/cosine

(D − a)(D − b)y = k cosαx or (D − a)(D − b)y = k sinαx

first solve
(D − a)(D − b)y = ke iαx

and then take the real or imaginary part (see example 6 p420-421).
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Laplace transform

I In mathematics and with many applications in physics and engineering and
throughout the sciences, the Laplace transform is a widely used integral
transform.

I Denoted L{f (t)}, it is a linear operator of a function f (t) with a real
argument t ≥ 0 that transforms it to a function F (p) with a complex
argument p.

I the respective pairs of f (t) and F (p) are matched in tables.

I The Laplace transform has the useful property that many relationships and
operations over the originals f (t) correspond to simpler relationships and
operations over the images F (p).

I It is named for Pierre-Simon Laplace, who introduced the transform in his
work on probability theory.
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Laplace transform (2)

I The Laplace transform is related to the Fourier transform,

I the Fourier transform expresses a function or signal as a series of modes of
vibration (frequencies), but the Laplace transform resolves a function into
its moments.

I Like the Fourier transform, the Laplace transform is used for solving
differential and integral equations.

I In physics and engineering it is used for analysis of linear time-invariant
systems such as electrical circuits, harmonic oscillators, optical devices,
and mechanical systems.
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Laplace transform (4)

Let L(f ) be the Laplace transform of f (t)

L(f ) =

∫ ∞
0

f (t)e−ptdt = F (p)

Example 1 : Let f (t) = C . Then

F (p) =

∫ ∞
0

Ce−pt =
1

p

Example 2 : Let f (t) = e−at . Then

F (p) =

∫ ∞
0

e−ate−pt =

∫ ∞
0

e−(a+p)t =
1

p + a
Re(p + a) > 0

Example 3 : Let f (t) = cos(at). Then

F (p) =

∫ ∞
0

cos(at)e−pt =
p

p2 + a2



Laplace transform (4)

Let L(f ) be the Laplace transform of f (t)

L(f ) =

∫ ∞
0

f (t)e−ptdt = F (p)

Example 1 : Let f (t) = C . Then

F (p) =

∫ ∞
0

Ce−pt =
1

p

Example 2 : Let f (t) = e−at . Then

F (p) =

∫ ∞
0

e−ate−pt =

∫ ∞
0

e−(a+p)t =
1

p + a
Re(p + a) > 0

Example 3 : Let f (t) = cos(at). Then

F (p) =

∫ ∞
0

cos(at)e−pt =
p

p2 + a2



Laplace transform (4)

Let L(f ) be the Laplace transform of f (t)

L(f ) =

∫ ∞
0

f (t)e−ptdt = F (p)

Example 1 : Let f (t) = C . Then

F (p) =

∫ ∞
0

Ce−pt =
1

p

Example 2 : Let f (t) = e−at . Then

F (p) =

∫ ∞
0

e−ate−pt =

∫ ∞
0

e−(a+p)t =
1

p + a
Re(p + a) > 0

Example 3 : Let f (t) = cos(at). Then

F (p) =

∫ ∞
0

cos(at)e−pt =
p

p2 + a2



Laplace transform (4)

Let L(f ) be the Laplace transform of f (t)

L(f ) =

∫ ∞
0

f (t)e−ptdt = F (p)

Example 1 : Let f (t) = C . Then

F (p) =

∫ ∞
0

Ce−pt =
1

p

Example 2 : Let f (t) = e−at . Then

F (p) =

∫ ∞
0

e−ate−pt =

∫ ∞
0

e−(a+p)t =
1

p + a
Re(p + a) > 0

Example 3 : Let f (t) = cos(at). Then

F (p) =

∫ ∞
0

cos(at)e−pt =
p

p2 + a2



Laplace transform (4)

Let L(f ) be the Laplace transform of f (t)

L(f ) =

∫ ∞
0

f (t)e−ptdt = F (p)

Example 1 : Let f (t) = C . Then

F (p) =

∫ ∞
0

Ce−pt =
1

p

Example 2 : Let f (t) = e−at . Then

F (p) =

∫ ∞
0

e−ate−pt =

∫ ∞
0

e−(a+p)t =
1

p + a
Re(p + a) > 0

Example 3 : Let f (t) = cos(at). Then

F (p) =

∫ ∞
0

cos(at)e−pt =
p

p2 + a2



Laplace inverse transform

A table of transforms can be built-up and used to carry out the Laplace and
inverse Laplace transforms (p469 in Boas)

There is little importance to these operations unless we can carry out the
inverse transform, i.e.

L(f (t)) = F (p) → L−1(F (p)) = f (t)
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Solution of diff. eqs. by Laplace transforms (1)

Let us consider y(t) and look at L(y ′) :

L(y ′) =

∫ ∞
0

y ′(t)e−ptdt

We integrate by parts :

L(y ′) =
[
y(t)e−pt]∞

0
−
∫ ∞
0

y(t)(−p)e−ptdt = −y(0) + pL(y)

One can also obtain

L(y ′′) = p2L(y)− py(0)− y ′(0)

It is common to use the notation Y = L(y) so that

L(y ′) = −y(0) + pY

L(y ′′) = p2Y − py(0)− y ′(0)
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Solution of diff. eqs. by Laplace transforms (2)

Example : Let us solve

y ′′ + 4y ′ + 4y = t2e−2t

with initial conditions y(t = 0) = 0 and y ′(t = 0) = 0.

We take the Laplace transform of each term in the equation :

[p2Y − py(0)− y ′(0)] + 4[−y(0) + pY ] + 4Y = L(t2e−2t)

One can show that

L(t2e−2t) =
2

(p + 2)3

and given the boundary (initial) conditions :

p2Y + 4pY + 4Y =
2

(p + 2)3

or,

Y =
2

(p + 2)5

We find that the inverse Laplace transform of Y is

y(t) =
2t4e−2t

4!
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Solution of diff. eqs. by Laplace transforms (2)

Example 2 : Let us solve

y ′′ + 4y = sin 2t

subject to initial conditions y(0) = 10, y ′(0) = 0.

We apply the same procedure :

p2Y − py(0)− y ′(0) + 4Y = L(sin(2t))

or,

(p2 + 4)Y − 10p =
2

p2 + 4

Y =
10p

p2 + 4
+

2

(p2 + 4)2

Using the Laplace formula table (L4 and L17) leads to

y = 10 cos 2t +
1

8
(sin 2t − 2t cos 2t)
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Solution of diff. eqs. by Laplace transforms (2)
Example 3 : Let us solve

y ′ − 2y + z = 0

z ′ − y − 2z = 0

subject to initial conditions y(0) = 1, z(0) = 0.

Let us define Y = L(y) and Z = L(z) and take the Laplace transform of both
equations :

pY − y(0)− 2Y + Z = 0

pZ − z(0)− Y − 2Z = 0

or,

(p − 2)Y + Z = 1

Y − (p − 2)Z = 0

We get

Y =
p − 2

(p − 2)2 + 1

or y(t) = e2t cos t
And since z = 2y − y ′ we arrive to

z(t) = e2t sin t
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