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new term, definition

Exercise for werkcollege

Homework

pay attention to this



Introduction (1)

I P prime numbers : 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,...

I N natural numbers : 0,1,2,3,4,5,6,7,8,9,10,11,...

I Z integers : -5,-4,-3,-2,-1,0,1,2,3,4,5,6

I D decimal numbers : 1.5, 2.89, -1.12

I Q rational numbers : can be expressed as the quotient or fraction a/b of
two integers, i.e. 1/2, 34/67,...

I R real numbers :
√

2, π, e, 1/3, 0.12345, ...

I C complex numbers : numbers which can be put in the form x + iy
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Introduction (2)

Let us consider the quadratic equation :

az2 + bz + c = 0

The solutions in R exist provided the discriminant ∆ = b2 − 4ac > 0 and write

z =
−b ±

√
b2 − 4ac

2a

If ∆ < 0 we must introduce a new kind of number : the imaginary number. We
then define i such that

i =
√
−1 , i2 = −1

Gerolamo Cardano, 1501-1576
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Introduction (2)

I Example 1 : √
−36 =

√
36× (−1) =

√
36
√
−1 = 6i

I Example 2 :
The solution of

z2 − 2z + 2 = 0

is

z =
2±
√

4− 4× 1× 2

2
=

2±
√
−4

2
=

2± 2
√
−1

2
= 1± i
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Real and imaginary parts of a complex number

Let us look at a complex number :

z = 5 + 3i

I 5 is the real part

I 3 is the imaginary part

I if the real part is zero, z is pure imaginary

I complex numbers include both real numbers and pure imaginary numbers
as special cases



The complex plane

The complex number z defines a point in the complex plane :

cos θ = x/r sin θ = y/r

z = x + iy = r(cos θ + i sin θ)
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Terminology, notation and algebra (1)

We have
z = x + iy = r(cos θ + i sin θ) = r e iθ

where

I r is called the modulus of z

I θ is called the angle of z

and
Re z = x Im z = y |z | = mod z = r =

√
x2 + y 2



Terminology, notation and algebra (2)

I The complex number x − iy is called the complex conjugate of z .

I its notation is

z = x − iy = r(cos θ − i sin θ) = r e−iθ
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Terminology, notation and algebra (3)

We have
|z | = r =

√
x2 + y 2 =

√
zz

I Example 1 : compute the modulus of∣∣∣∣√5 + 3i

1− i

∣∣∣∣ =
|
√

5 + 3i |
|1− i | =

√
14√
2

=
√

7

I Example 2 : what are the real and imaginary parts of

2i − 1

i − 2
=

2i − 1

i − 2

i + 2

i + 2
=

2i2 + 4i − i − 2

i2 − 4
=
−4 + 3i

−5
=

4

5
− 3

5
i
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Terminology, notation and algebra (4)

I Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if both
x1 = x2 and y1 = y2.

Question : Find x and y if (x + iy)2 = 2i

(x + iy)2 = (x2 − y 2) + i(2xy)

leading to write
x2 − y 2 = 0 and 2xy = 2

which gives
x = y = 1 or x = y = −1
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an illustration of zz = x2 + y 2 ∈ R

http://xkcd.com/



an illustration of zz = x2 + y 2 ∈ R

http://xkcd.com/



tentamen 2012.



Complex infinite series

Example 1 : Let us consider the following complex series :

1 +
1 + i

2
+

(1 + i)2

4
+

(1 + i)3

8
+ . . .

(1 + i)n

2n
+ . . .

Question : is this series absolutely convergent ?

We use the ratio test :

ρ = lim
n→∞

∣∣∣∣ (1 + i)n+1

2n+1
/

(1 + i)n

2n

∣∣∣∣ = lim
n→∞

∣∣∣∣1 + i

2

∣∣∣∣ =

√
2

2
< 1

Since ρ < 1 the series is absolutely convergent.
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Complex infinite series

Example 2 : Let us consider the following series

∞∑
n=0

zn

We can write further
∞∑
n=0

zn =
∞∑
n=0

(re iθ)n

This is a geometric series with ratio re iθ and therefore converges only if
|re iθ| < 1, i.e. r < 1.
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Complex power series (1)

From
∑

anx
n to

∑
anz

n where an ∈ C and z ∈ C

I Example 1 :

1− z +
z2

2
− z3

3
+

z4

4
+ . . .

We use the ratio test to find for what z the series is absolutely convergent :

ρ = lim
n→∞

∣∣∣∣ zn+1

n + 1
/
zn

n

∣∣∣∣ = lim
n→∞

∣∣∣∣ z n

n + 1

∣∣∣∣ = |z |

The series converges if ρ < 1, i.e. |z | < 1.
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Complex power series (2)

I Example 2 :

1 + iz +
(iz)2

2!
+

(iz)3

3!
+ . . .

ρ = lim
n→∞

∣∣∣∣ (iz)n+1

(n + 1)!
/

(iz)n

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣ iz

n + 1

∣∣∣∣ = 0

This series converges for all values of z .
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Complex power series (3)

I Example 3 :
∞∑
n=0

(z + 1− i)n

3nn2

ρ = lim
n→∞

∣∣∣∣z + 1− i

3

n2

(n + 1)2

∣∣∣∣ =

∣∣∣∣z + 1− i

3

∣∣∣∣

The series converges for |z + 1− i | < 3. This is the interior of a
disk of radius 3 and centered at z = −1 + i .
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Elementary functions of complex numbers (1)

From f (x), x ∈ R to f (z), z ∈ C ...

Let us consider

f (z) =
z2 + 1

z − 3

Then

f (i − 2) =
(i − 2)2 + 1

(i − 2)− 3
=

4− 4i

−5 + i
=

4− 4i

−5 + i

−5− i

−5− i
=
−12 + 8i

13
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Elementary functions of complex numbers (2)

d

dz
ez =

d

dz

(
∞∑
n=0

zn

n!

)

=
d

dz

(
1 + z +

z2

2
+

z3

3
+ · · ·+ zn

n!
+ . . .

)
=

(
1 + z +

z2

2
+ · · ·+ zn−1

(n − 1)!
+ . . .

)
=
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n=0

zn

n!

= ez
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Euler’s formula

We have already established

sin θ = θ − θ3

3!
+
θ5

5!
+ . . .

cos θ = 1− θ2

2!
+
θ4

4!
+ . . .

We can write

e iθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ . . .

=

(
1− θ2

2!
+
θ4

4!
+ . . .

)
+ i

(
θ − θ3

3!
+
θ5

5!
+ . . .

)
= cos θ + i sin θ (1)

It also follows :

sin θ =
e iθ − e−iθ

2i
cos θ =

e iθ + e−iθ

2
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Complex numbers and angles

Let us start with :

e2iπ = cos 2π + i sin 2π = 1 + i · 0 = 1

⇒ for any integer n

e2inπ = cos 2nπ + i sin 2nπ = 1 + i · 0 = 1

e iπ/4 = cos
π

4
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√
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+ i

√
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(1 + i)
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2
= 0 + i · 1 = i

e iπ = cosπ + i sinπ = −1 + i · 0 = −1

e3iπ/2 = cos
3π

2
+ i sin

3π

2
= 0 + i · (−1) = −i
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Powers and roots of complex numbers

We have the following properties :

z1 · z2 = r1e
iθ1 · r2e iθ2 = r1r2e

i(θ1+θ2)

z1
z2

=
r1
r2
e i(θ1−θ2)

(e iθ)n = (cos θ + i sin θ)n = cos nθ + i sin nθ

z1/n = (r e iθ)1/n = r 1/n(cos θ + i sin θ)1/n = r 1/n(cos
θ

n
+ i sin

θ

n
)
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Example 1

Let us consider the following complex number :

z = cos
π

10
+ i sin

π

10

We wish to compute z25.

→ who wants to compute (cos π
10

+ i sin π
10

)25 ?
Instead, we write

z25 = (e iπ/10)25 = e i25π/10 = e i5π/2 = e2iπe iπ/2 = 1 · i = i
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Example 2

In R the equation x3 = 8 only has one solution : x = 2

In C the equation z3 = 8 only has three solution : z = 2, and ... ?
We can write

z3 = (r e iθ)3 = r 3e3iθ

and
8 = 8e2iπ = 8e2niπ

so

z3 = 8 ⇒ r 3e3iθ = 8e2iπ

⇒ r = 2, θ = 2nπ/3

I n = 0 → z = 2e0 = 2

I n = 1 → z = 2e2iπ/3

I n = 2 → z = 2e4iπ/3

I n = 3 → z = 2e6iπ/3 = 2e2iπ = 2 (same as n = 0 ! !)
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Example 3

Question : find and plot all values of 4
√
−64

We write
−64 = 64 · (−1) = 64e iπ+2inπ

so that

4
√
−64 =

4
√

64e iπ+2inπ = 641/4e iπ/4+inπ/2 = 2
√

2e iπ/4+inπ/2

I n = 0 → z = 2
√

2e iπ/4

I n = 1 → z = 2
√

2e3iπ/4

I n = 2 → z = 2
√

2e5iπ/4

I n = 3 → z = 2
√

2e7iπ/4
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Example 4

Question : find and plot all values of 6
√
−8i

−8i = 8 · (−i) = 8e i(3π/2+2nπ)

6
√
−8i = 81/6e i(3π/12+2nπ/6)

= 23/6e i(π/4+nπ/3)

=
√

2e i(π/4+nπ/3)

Once again, the points are to be found by setting n = 0, 1, 2, 3.
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Hyperbolic functions

Remember

sin θ =
e iθ − e−iθ

2i
cos θ =

e iθ + e−iθ

2

One can also prove that

sin z =
e iz − e−iz

2i
cos z =

e iz + e−iz

2

Taking z = iy we get

sin iy = i
ey − e−y

2
cos iy =

ey + e−y

2

It is common to define so-called hyperbolic functions :

sinh y =
ey − e−z

2
cosh y =

ey + e−y

2
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complex numbers and rotations

I In geometry and linear algebra, a rotation is a transformation in a plane or
in space that describes the motion of a rigid body around a fixed point.

I Only a single angle is needed to specify a rotation in two dimensions the
angle of rotation.

I To calculate the rotation two methods can be used, either matrix algebra
or complex numbers. In each the rotation is acting to rotate an object
counterclockwise through an angle θ about the origin.
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complex numbers and rotations (2)

Matrix algebra
To carry out a rotation using matrices the point (x , y) to be rotated is written
as a vector, then multiplied by a matrix calculated from the angle, θ, like so :[

x ′

y ′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

where (x , y) are the co-ordinates of the point after rotation, and the formulae
for x and y can be seen to be

x ′ = x cos θ − y sin θ (2)

y ′ = x sin θ + y cos θ. (3)



complex numbers and rotations (2)

complex numbers
Points can also be rotated using complex numbers, as the set of all such
numbers, the complex plane, is geometrically a two dimensional plane.
The point (x , y) in the plane is represented by the complex number

z = x + iy

This can be rotated through an angle θ by multiplying it by e iθ, then expanding
the product using Euler’s formula as follows :

e iθz = (cos θ + i sin θ)(x + iy) (4)

= (x cos θ + iy cos θ + ix sin θ − y sin θ) (5)

= (x cos θ − y sin θ) + i(x sin θ + y cos θ) (6)

= x ′ + iy ′, (7)

which gives the same result as before,

x ′ = x cos θ − y sin θ (8)

y ′ = x sin θ + y cos θ. (9)


