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Arithmetic series

Let us consider the following arithmetic progressions :

1, 2, 3, 4, 5, 6, 7, 8, 9, . . .

or
0, 5, 10, 15, 20, 25, 30, 35, . . .

They are of the form

a1, a2, a3, a4, a5, . . . with an = an−1 + d

It also follows that
an = a1 + (n − 1)d

The sum Sn of the members of a finite arithmetic progression is called an
arithmetic series :

Sn =
n

2
(a1 + an)
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Geometric series

I Simple examples :
2, 4, 8, 16, ...

1,
2

3
,

4

9
,

8

27
,

16

81
, ...

a, ar , ar 2, ar 3, ...

I The terms of a geometric series for a geometric progression : the ratio of
successive terms in the series is constant.

4 + 40 + 400 + 4000 + 40000 + .... → ratio r = 10

9 + 3 + 1 +
1

3
+

1

9
+ ... → ratio r =

1

3

7 + 7 + 7 + 7 + 7 + 7... → ratio r = 1

1− 1

2
+

1

4
− 1

8
+ ... → ratio r = −1

2
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Geometric series (2)

I Question : what is the sum of all these series ?

I The sum of n terms of a geometric series is

Sn = a
1− rn

1− r

I The sum of the geometric series (if it has one) is by definition

S = lim
n→∞

Sn

I A geometric series has a sum if and only if |r | < 1 and in this case

S =
a

1− r

The series is then called convergent

Ex. 1.1.12, 1.1.13, 1.1.15
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Geometric series (3) - Fun stuff

1 +
1

2
+

1

4
+

1

8
+

1

16
+ . . .

the geometric series 1 + 1/2 + 1/4 + 1/8 + ... converges to 2.
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Geometric series (4) - Fun stuff

0.7777... =
7

10
+

7

100
+

7

1000
+

7

10000
+ ...

we find that

a =
7

10
r =

1

10

so since r < 1

0.7777... =
a

1− r
=

7/10

1− 1/10
=

7

9

Let us now look at
0.123412341234...

0.123412341234... =
1234

10000
+

1234

100002
+

1234

100003
+ ...

so

0.123412341234... =
1234/10000

1− 1/10000
=

1234

9999
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Harmonic series (1)

the harmonic series is given by

∞∑
n=1

= 1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . .

Question : is the sum finite or infinite ?
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Harmonic series (2)

1+
1

2
+(

1

3
+

1

4
)+(

1

5
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1

6
+

1

7
+

1

8
)+· · · > 1+

1

2
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1

4
+

1

4
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1

8
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1

8
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8
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8
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and
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2
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1

4
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4
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1

8
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1

8
+

1

8
+

1

8
) + · · · = 1 +

1

2
+

1

2
+

1

2
+ · · · → ∞

The harmonic series diverges very slowly : the sum of the first 1043 terms is less
than 100.
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Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

Question : is this an arithmetic/geometric/harmonic progression ?

The number progression is built as follows :

an = an−1 + an−2
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Fibonacci numbers (2)

I The Fibonacci numbers are Nature’s numbering system

I Plants do not know about this sequence - they just grow in the most
efficient way

I Phyllotaxis is the study of the ordered positions of leaves on a stem



Fibonacci numbers (3)

3 petals lily, iris
5 petals buttercup, wild rose, larkspur, columbine
8 petals delphiniums
13 petals ragwort, corn marigold, cineraria
21 petals aster, black-eyed susan, chicory
34 petals plantain, pytethrum
55,89 petals michelmas daisies, the asteraceae family



Definitions and notation

I In general an infinite series means an expression of the form

a1 + a2 + a3 + a4 + a5 · · ·+ an + . . .

I examples

12 + 22 + 32 + · · · =
∞∑
n=1

n2

I

x − x2 +
x3

2
− x4

6
+ · · · =

∞∑
n=1

(−1)n−1xn

(n − 1)!

n! = n × (n − 1)× (n − 2)× . . . 1 with 0! = 1

Ex. 1.2.1
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Convergent and divergent series

partial sum : Sn with S = lim
n→∞

Sn

I if the partial sums Sn of an infinite series tend to a limit S , the series is
called convergent.
Otherwise it is called divergent.

I The limiting value S is called the sum of the series.

I The difference Rn = S − Sn is called the remainder.

lim
n→∞

Rn = lim
n→∞

(S − Sn) = S − S = 0

Ex. 1.4.3
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The preliminary test

Preliminary test :

I if the terms of an infinite series do not tend to zero (i.e. limn→∞ an 6= 0),
the series diverges.

I If limn→∞ an = 0, further testing is needed.

This is not a test for convergence.

Ex. 1.5.3



Tests for convergence of series of positive terms (1)

A :The comparison test

I Let
m1 + m2 + m3 + m4 + . . .

be a series of positive terms which is convergent.
The series

a1 + a2 + a3 + a4 + . . .

is absolutely convergent if |an| ≤ mn

I Let
d1 + d2 + d3 + d4 + . . .

be a series of positive terms which is divergent.
The series

|a1|+ |a2|+ |a3|+ |a4|+ . . .

diverges if |an| ≥ dn for all n from some point on.

Ex. 1.6.13, 1.6.10
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Tests for convergence of series of positive terms (2)

B :The integral test

I If 0 < an+1 < an for n > N, then
∑
∞ an converges if

∫∞
an dn is finite

and diverges if the integral is infinite.

I Example : let us consider the harmonic series

1 +
1

2
+

1

3
+

1

4
+ . . .

Using the integral test : ∫ ∞ 1

n
dn = [ln n]∞ =∞

The integral is infinite → the series diverges.
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Tests for convergence of series of positive terms (3)

C :The ratio test
Let us define ρn as follows :

ρn =

∣∣∣∣an+1

an

∣∣∣∣
and

ρ = lim
n→∞

ρn

I if ρ < 1 the series converges

I if ρ = 1 use a different test

I if ρ > 1 the series diverges

Example : an = 1
n!

ρn =

∣∣∣∣1/(n + 1)!

1/n!

∣∣∣∣ =
n!

(n + 1)!
=

n(n − 1)(n − 2) . . . 1

(n + 1)n(n − 1)(n − 1) . . . 1
=

1

n + 1

ρ = lim
n→∞

ρn = lim
n→∞

1

n + 1
= 0

Since ρ < 1 the series converges.
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Tests for convergence of series of positive terms (4)

D :Special comparison test
This test has two parts :

I If
∑∞

n=1 bn is a convergent series of positive terms and an ≥ 0 and an/bn
tends to a finite limit, then

∑∞
n=1 an converges.

I If
∑∞

n=1 dn is a divergent series of positive terms and an ≥ 0 and an/dn
tends to a limit greater than 0 (or tends to +∞), then

∑∞
n=1 an diverges.



Example : Let us consider :

∞∑
n=3

√
2n2 − 5n + 1

4n3 − 7n2 + 2

When n→∞,
2n2 − 5n + 1 ' 2n2

4n3 − 7n + 2 ' 4n3

Since
√

2n2/4n3 ∼ 1/n2, we define the comparison series as being bn = 1/n2

lim
n→∞

an
bn

= lim
n→∞

(√
2n2 − 5n + 1

4n3 − 7n2 + 2
/

1

n2

)
= lim

n→∞

√
2− 5/n + 1/n2

4− 7/n + 2/n3
=

√
2

4

Since this is a finite limit, the series an converges. Tadaaa !
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2− 5/n + 1/n2

4− 7/n + 2/n3
=

√
2

4

Since this is a finite limit, the series an converges. Tadaaa !
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Alternating series

Example :

1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·+ (−1)n+1

n

Test : An alternating series converges if the absolute value of the terms
decreases steadily to zero, that is |an+1| ≤ |an| and limn→∞ an = 0

Since 1
n+1

< 1
n

and limn→∞
1
n

= 0 then the series converges.



Useful facts about series

I the convergence or divergence of a series is not affected by multiplying
every term by the same nonzero constant.

I the convergence or divergence of a series is not affected by changing a
finite number of terms.

I two convergent series may be added or substracted term by term.
I The resulting series is convergent.
I its sum is obtained by adding or substracting the sums of the two given

series.

I the terms of an absolutely convergent series may be rearranged in any
order without affecting either the convergence or sum.
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Power series (1)

A power series is of the form

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + . . .

or

∞∑
n=0

an(x − x0)n = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + . . .

Examples :

1− x

2
+

x2

4
− x3

8
+ · · ·+ (−x)n

2n

x − x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n+1x2n−1

(2n − 1)!
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Power series (2) - interval of convergence

Looking at

1− x

2
+

x2

4
− x3

8
+ · · ·+ (−x)n

2n

ρn =

∣∣∣∣ (−x)n+1

2n+1
/

(−x)n

2n

∣∣∣∣ =
∣∣∣x

2

∣∣∣
ρ = lim

n→∞
ρn =

∣∣∣x
2

∣∣∣
The series converges for ρ < 1, i.e. |x | < 2.



Mathematical intermezzo

I The concept of a Taylor series was formally introduced by the English
mathematician Brook Taylor in 1715.

I If the Taylor series is centered at zero, then that series is also called a
Maclaurin series

Brook Taylor (1685-1731) Colin Maclaurin (1698-1746)
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Power series (3) - theorems

Let us define the sum of the series S(x) :

S(x) =
∞∑
n=0

anx
n

I a power series may be differentiated or integrated term by term. The
resulting series converges to the derivative or integral of the function
represented by the original series within the same interval of convergence
as the original series.

I two power series may be added, substracted or multiplied ; the resultant
series converges at least in the common interval of convergence.

I the power series of a function is unique : there is just one power series of
the form

∑
anx

n which converges to a given function.
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Expanding functions in power series

Definition : In mathematics, a Taylor series is a representation of a function as
an infinite sum of terms that are calculated from the values of the function’s
derivatives at a single point.

The Taylor series for f (x) about x = x0 writes :

f (x) = f (x0) + (x − x0)f ′(x0) +
1

2!
(x − x0)2f ′′(x0) + · · ·+ 1

n!
(x − x0)nf (n)(x0)

Putting x0 = 0 we obtain the Maclaurin series for f (x) :

f (x) = f (0) + xf ′(0) +
1

2!
x2f ′′(0) + · · ·+ 1

n!
xnf (n)(0)
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Expanding functions in power series (2)

sin x =
∞∑
n=0

(−1)nx2n+1

(2n + 1)!
= x − x3

3!
+

x5

5!
− x7

7!
+ ...

f (x) = x
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Expanding functions in power series (3)

Question : What are the first terms of the Taylor expansion of a polynomial ?

Let us consider the following 4th-order polynomial expression :

f (x) = 4x4 + 3x3 − 2x2 + x − 7

Then

f ′(x) = 16x3 + 9x2 − 4x + 1 → f ′(0) = 1

f ′′(x) = 48x2 + 18x − 4 → f ′′(0) = −4

f ′′′(x) = 96x + 18 → f ′′′(0) = 18

f ′′′′(x) = 96 → f ′′′′(0) = 96

f ′′′′′(x) = 0 → f ′′′′′(0) = 0

We have

f (x) = f (0) + xf ′(0) +
1

2!
x2f ′′(0) +

1

3!
x3f ′′′(0) +

1

4!
x4f ′′′′(0) + 0 + 0 + ...

f (x) = −7 + 1x +
−4

2
x2 +

1

6
x318 +

1

24
x496 + 0 + 0 + ...

Tadaa ! the Maclaurin expansion of a polynomial is exactly itself.
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Expanding functions in power series (4)
Open a book and you will find

cos x =
∞∑
n=0

(−1)nx2n

(2n)!

How can we obtain this ?

We know that

d

dx
sin x = cos x and sin x =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

So let’s compute it !

d

dx
sin x =

d

dx

(
∞∑
n=0

(−1)nx2n+1

(2n + 1)!

)

=
∞∑
n=0

d

dx

(−1)nx2n+1

(2n + 1)!

=
∞∑
n=0

(−1)n(2n + 1)x2n

(2n + 1)!

=
∞∑
n=0

(−1)n(2n + 1)x2n

(2n + 1)(2n)!

=
∞∑
n=0

(−1)nx2n

(2n)!
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Expanding functions in power series (3)

ex =
∞∑
n=0

xn

n!

ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n

√
1 + x =

∞∑
n=0

(−1)n(2n)!

(1− 2n)(n!)2(4n)
xn for |x | ≤ 1

... and many more !



Computing π

We have
1

1 + x2
= 1− x2 + x4 − x6 + ..

and we know that ∫
1

1 + x2
= atan(x)

so that

atan(x) = x − x3

3
+

x5

5
− x7

7
+ . . .

Since atan(1) = π
4

then

π = 4

(
1− 1

3
+

1

5
− 1

7
+ ...

)



Computing π (2)



Application

Suppose we want to evaluate the definite integral∫ 1

0

sin(x2)dx

We know that

sin t = t − t3

3!
+

t5

5!
− t7

7!
+ ...

If we now substitute t = x2 then

sin(x2) = x2 − x6

3!
+

x10

5!
− x14

7!
+ ...

and then∫ 1

0

sin(x2)dx =

∫ 1

0

(
x2 − x6

3!
+

x10

5!
− x14

7!
+ ...

)
=

1

3
− 1

7.3!
+

1

11.5!
− 1

15.7!
+...


