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Arithmetic series
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Arithmetic series

Let us consider the following arithmetic progressions :
1,2,3,4,5,6,7,8,9,...
or
0,5, 10, 15, 20, 25, 30, 35, . ..
They are of the form

ai,az,as, as, as, ... with ap=ap-1+d

It also follows that
apn=a1+ (n—1)d

The sum S, of the members of a finite arithmetic progression is called an

arithmetic series :

Sn (al + an)

n
2
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Geometric series

» Simple examples :
2,4,8,16,.
2 4 6
1.2 2 e
’379727’81
3

a,ar,ar",ar’, ...

Nm‘m

> The terms of a geometric series for a : the ratio of

successive terms in the series is constant.

4 + 40 + 400 + 4000 + 40000 + .... — ratio r = 10

1 1 1

T+7+7+7+7+T7... —ratior=1



Geometric series

» Simple examples :

2,4,8,16,.

1248 j

379’27’ 81

2 _ 3

a,ar,ar",ar’, ...
> The terms of a geometric series for a : the ratio of
successive terms in the series is constant.
4 + 40 + 400 + 4000 + 40000 + .... — ratio r = 10

1 1 1
T+7+74+7+7+T7... —ratior =1
1—14—1—}—4— —>ra‘cior*—1
2 4 8 7 T2



Geometric series (2)

» Question : what is the sum of all these series ?
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Geometric series (2)

» Question : what is the sum of all these series ?

> The sum of n terms of a geometric series is
1—1r"
Sp=a
" 1—r
> The sum of the geometric series (if it has one) is by definition
S=Ilim S,
n— oo
» A geometric series has a sum if and only if |r| < 1 and in this case
a
S =
1—r

The series is then called

Ex. 1.1.12, 1.1.13, 1.1.15



Geometric series (3) - Fun stuff

1

1
+2

I
478" 16



Geometric series (3) - Fun stuff

the geometric series 1 + 1/2 + 1/4 + 1/8 + ... converges to 2.



Geometric series (4) - Fun stuff
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7 7 7 7
T777... = —+ — 4+ —— + ———
0 10 + 100 * 1000 + 10000
we find that
LT .1
10 T
so since r < 1
a 7/10 7
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Geometric series (4) - Fun stuff

0.7777 71+L+L+i+
’ " 10 100 1000 10000 @
we find that
LT .1
10 T
so since r < 1
a 7/10 7

0.7777... = 1, :1—71/10:5

Let us now look at
0.123412341234...

1234 1234 1234
0.123412341234... = 005+ 705002 T 100007

so
1234/10000 _ 1234

~ 1-1/10000 _ 9999

0.123412341234...



Harmonic series (1)

the harmonic series is given by

i—1+1+1+3+1+
o273 s

n=1

Question : is the sum finite or infinite ?



Harmonic series (1)

the harmonic series is given by

o0

Z—1+1+1+1+1+
— o 2 3 4 5 7
Question : is the sum finite or infinite ?
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Harmonic series (2)
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Harmonic series (2)

i hed i i b s G had il by
2''3°4’"'5'6 ' 7"8 2''44’"'8"'88"'8° "

and

1+1+(1+1)+(1+1+1+1)+...—1+}+}+1+...4)00
2 ‘4 4 8 8 8 8 - 2 22

The harmonic series diverges very slowly : the sum of the first 10*® terms is less
than 100.



Harmonic series (3)




Harmonic series (3)

172

13

1/4

1/5

1/6

1/7



Fibonacci numbers
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Fibonacci numbers

0,1,1,2,3,5,8,13,21, 34,55, 89, 144

Question : is this an arithmetic/geometric/harmonic progression ?

The number progression is built as follows :

an = ap—1+ an—2




Fibonacci numbers (2)

» The Fibonacci numbers are Nature's numbering system

» Plants do not know about this sequence - they just grow in the most
efficient way

> Phyllotaxis is the study of the ordered positions of leaves on a stem

arc A

arclength arc B
e & =137
) - 1619 arc angle arc k)

arcb



Fibonacci numbers (3)

3 petals

5 petals

8 petals

13 petals
21 petals
34 petals
55,89 petals

lily, iris
buttercup, wild rose, larkspur, columbine
delphiniums

ragwort, corn marigold, cineraria

aster, black-eyed susan, chicory
plantain, pytethrum

michelmas daisies, the asteraceae family
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Definitions and notation

> In general an infinite series means an expression of the form

aat+a+taztast+as---+an+...

> examples

12_'_22_'_32_’__“:2"2
>
3 nln
SR (1)
X — X"+ Z (n—1)!
& n=nx(n-1)x(n—-2)x...1 with 0l =1

Ex. 1.2.1
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Convergent and divergent series

partial sum : S, with S=1lim S,

n—oo

> if the partial sums S, of an infinite series tend to a limit S, the series is
called convergent.
Otherwise it is called divergent.

> The limiting value S is called the sum of the series.
> The difference R, = S — S, is called the remainder.

lim R, = lim(§—-5,)=5-5=0

n—o0o n— oo

Ex. 1.4.3



The preliminary test

> if the terms of an infinite series do not tend to zero (i.e. limy— o0 an # 0),
the series diverges.

> If limp—oo an = 0, further testing is needed.

& This is not a test for convergence.

Ex. 1.5.3



Tests for convergence of series of positive terms (1)

A :The comparison test

> Let
my+my+ms+mg+ ...

be a series of positive terms which is convergent.
The series
aitatatas+...

is absolutely convergent if |an| < mp



Tests for convergence of series of positive terms (1)

A :The comparison test

> Let
my+my+ms+mg+ ...

be a series of positive terms which is convergent.
The series
aitatatas+...
is absolutely convergent if |an| < mp
> Let
di+do+ds+ds+...

be a series of positive terms which is divergent.
The series
|lar| + [a2| + |as| 4 |aa| + . ..

diverges if |an| > d, for all n from some point on.

Ex. 1.6.13, 1.6.10



Tests for convergence of series of positive terms (2)

B :The integral test

> If 0 < a541 < a, for n > N, then Y~ _ a, converges if f°° an dn is finite
and diverges if the integral is infinite.



Tests for convergence of series of positive terms (2)

B :The integral test

» If 0 < apy1 < an for n > N, then Zoo a, converges if foo an dn is finite
and diverges if the integral is infinite.

» Example : let us consider the harmonic series
1+ 1 + 1 + 1 +
2 3 4 7

Using the integral test :
o0 1 o
—dn=[Inn]* =00
n

The integral is infinite — the series diverges.



Tests for convergence of series of positive terms (3)

C :The ratio test
Let us define p, as follows :

_ an+1
Pn an
and
p= lim p,
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C :The ratio test
Let us define p, as follows :

p _ an+1
. = |22t
an
and
p= lim p,
n—oo

> if p < 1 the series converges
> if p =1 use a different test

> if p > 1 the series diverges



Tests for convergence of series of positive terms (3)

C :The ratio test
Let us define p, as follows :

_ an+1
Pn = an
and
p= lim p,
n—o00
> if p < 1 the series converges
> if p =1 use a different test
> if p > 1 the series diverges
Example : a, = %
_’1/(n+1)!’ nl n(n—1)(n—2)...1 1

ynt |~ (n+1)! (n+Dn(n—1)(n—-1)...1 n+1



Tests for convergence of series of positive terms (3)

C:
Let us define p, as follows :
_ an+1
Pn = an
and
p=lm p.
> if p < 1 the series converges
> if p =1 use a different test
> if p > 1 the series diverges
Example : a, = #
|+ 1)t ot n(n—1)(n—2)...1 1
P | T hr ) T (n+Da(n—1)(n—1)...1 n+1

=1 =1 1 =0
p= fimoon = fim o =

Since p < 1 the series converges.



Tests for convergence of series of positive terms (4)

D:
This test has two parts :
> If >°>° . b, is a convergent series of positive terms and a, > 0 and a,/b,
tends to a finite limit, then Z;’il an converges.
> If Z;’il » is a divergent series of positive terms and a, > 0 and a,/d,
tends to a limit greater than 0 (or tends to +00), then Y, a, diverges.
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Example : Let us consider :

i vV2n? —5n+1

4n —7n% 42
n=3

When n — oo,
2n° —5n+ 1~ 2n?

4n® —7Tn+2 =~ 4n’
Since v2n2/4n® ~ 1/n?, we define the comparison series as being b, = 1/n°

im 2 — lim <\/2”2*5”+1/l) — lim V2—-5/n+1/n% Q

4n3 —7n2 42 " nsoo 4—T7/n+2/n3 4

n—oo Dp n—o0



Example : Let us consider :

i vV2n? —5n+1

4n —7n% 42
n=3

When n — oo,
2n° —5n+ 1~ 2n?
4n* —7n+2 ~4n°

Since v2n2/4n® ~ 1/n?, we define the comparison series as being b, = 1/n°

im 2 — lim <\/2”2*5”+1/l) — lim V2—-5/n+1/n% Q

4n3 —7n2 42 " nsoo 4—T7/n+2/n3 4

n—oo Dp n—o0

Since this is a finite limit, the series a, converges. Tadaaa



Alternating series

Example :
(_1)n+1
n

1- >+ +o—t

N =
[eIE
Bl
[0

Test : An alternating series converges if the absolute value of the terms
decreases steadily to zero, that is |an+1| < |as| and limp—oc an = 0

Since —1; < * and lim,—o + = 0 then the series converges.
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Useful facts about series

» the convergence or divergence of a series is not affected by multiplying
every term by the same nonzero constant.

> the convergence or divergence of a series is not affected by changing a
finite number of terms.
> two convergent series may be added or substracted term by term.
> The resulting series is convergent.
> its sum is obtained by adding or substracting the sums of the two given
series.
> the terms of an absolutely convergent series may be rearranged in any
order without affecting either the convergence or sum.



Power series (1)

A power series is of the form

oo
2 3
E anx" = ap + a1x + axx” + azx" + ...
n=0
or

oo

Z an(x — x0)" = a0 + a1(x — x0) + ax(x — x0)* + az(x —x0)> + ...
n=0



Power series (1)

A is of the form

2 3
E anx" = ap + a1x + axx” + azx" + ...

n=0
or
Zan x —x0)" = a0 + a1(x — x0) + ax(x — x0)* + az(x —x0)> + ...
n=0
Examples :
2 3 n
X | x° X (—=x)
1242 2 48
2 + 4 8 Tt 2n



Power series (1)

A is of the form

2 3
E anx" = ap + a1x + axx” + azx" + ...

n=0
or
Zan x —x0)" = a0 + a1(x — x0) + a2(x — x0)° + as(x — x0)> + ...
n=0
Examples :
2 3 n
X X X (—=x)
1242 % 4.
2 + 4 8 T 2n
X3 X5 X7 (_1)n+1X2n—1
X— o+ -5+ +

3T 7T (2n—1)!



Power series (2) - interval of convergence

Looking at
2 3 n
x | x°  x (—x)
1242 2 4.
5 + n +--+ o

=[3
~ 12

B
B)
|

= ’%/(ZE)"

— lim 7’5’
p= Pn = 5

n—o0

The series converges for p < 1, i.e. |x| < 2.



Mathematical intermezzo

» The concept of a Taylor series was formally introduced by the English
mathematician Brook Taylor in 1715.

> If the Taylor series is centered at zero, then that series is also called a
Maclaurin series



Mathematical intermezzo

> The concept of a Taylor series was formally introduced by the English
mathematician Brook Taylor in 1715.

> If the Taylor series is centered at zero, then that series is also called a
Maclaurin series

Brook Taylor (1685-1731) Colin Maclaurin (1698-1746)



Power series (3) - theorems

Let us define the sum of the series S(x) :

S(x) = i anx"
n=0
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Power series (3) - theorems

Let us define the sum of the series S(x) :
S(x) = Z anx"
n=0

> a power series may be differentiated or integrated term by term. The
resulting series converges to the derivative or integral of the function
represented by the original series within the same interval of convergence
as the original series.

> two power series may be added, substracted or multiplied ; the resultant
series converges at least in the common interval of convergence.

> the power series of a function is unique : there is just one power series of
the form Y a,x” which converges to a given function.



Expanding functions in power series

Definition : In mathematics, a Taylor series is a representation of a function as
an infinite sum of terms that are calculated from the values of the function’s
derivatives at a single point.

The Taylor series for f(x) about x = xp writes :

F(3) = Flx0) + (x = %0)F'(30) + 5 (x = 307" (x0) + -+ = (x = 20)"F " x0)



Expanding functions in power series

Definition : In mathematics, a Taylor series is a representation of a function as
an infinite sum of terms that are calculated from the values of the function’s
derivatives at a single point.

The Taylor series for f(x) about x = xp writes :

1 1 n n
F(x) = £(x0) + (x = x0)f"(x0) + 57 (x = x0)*F"(x0) + -+ + 1 (x = %)"F" ()
Putting xo = 0 we obtain the Maclaurin series for f(x) :

f(x) = £(0) + xf'(0) + %X2f”(0) T %anw(o)



Expanding functions in power series (2)

0.5

) _ o (_1)nX2n+1 B X3 x X7
s'”X_Z; (2n+1)! i ter Tt
X Gnuplot
sinfx)

-1

-3
0,474520, -0,228126




Expanding functions in power series (2)

oo
. (—1)"x>"+t x3 n X x’ n
sz:E =X — =+ = — =+
(2n+1)! 3! 51 7!
n=0
oo X| Gnuplot
1
St
0.5
0
0.5
-1
-3 -2 -1 0 1 2 3
-0,698318, -0,261361 A
3
f(x)=x—=



Expanding functions in power series (2)

oo
. (71)nx2n+1 3 N X5 X7 N
sinx = E AN VA A A
(2n+1)! 31 5 7l
n=0
oo X| Gnuplot
1
sinfx)
0.5
0
Y
-1
-3 -2 -1 0 1 2 3
-2,43318, -0,170600 i
3 5
X X
f(x)=x— —+ —
(x) 3! + 5!



Expanding functions in power series (2)

o 2041 3 5 7
. (—-1)"x x* x> x
sinx = = —t= =+
nZO (2n+1)! 3t 517!
8no N Gnuplot
N B
0.5
0
-0.5
WL . .
-3 -1 1 2
1.559520, -0 271478 VY
3 5 7
x> x> X
f(x) X_§+a_ﬁ+



Expanding functions in power series (3)

Question : What are the first terms of the Taylor expansion of a polynomial ?

Let us consider the following 4th-order polynomial expression :

f(x)=ax"+3x> =2 + x - 7
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f(x)=ax"+3x> =2 + x - 7

Then
fl(x)=16x +9x* —4x+1 — f(0)=1
f'(x) =48x" +18x —4 — f"(0)=—4
f"(x)=96x+18 — f"(0)=18
f"(x) =96 — f"(0)=096
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Question : What are the first terms of the Taylor expansion of a polynomial ?

Let us consider the following 4th-order polynomial expression :

f(x)=ax"+3x> =2 + x - 7

Then
fl(x)=16x +9x* —4x+1 — f(0)=1
f'(x) =48x" +18x —4 — f"(0)=—4
f"(x)=96x+18 — f"(0)=18
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f-ll///(X) — 0 N f-////l(o) — O
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F(x) = F(0) + xF'(0) + X7 (0) + 3°F"(0) + gx*F"(0) +0+ 04 .



Expanding functions in power series (3)

Question : What are the first terms of the Taylor expansion of a polynomial ?

Let us consider the following 4th-order polynomial expression :

f(x)=4x"+3x —2x* +x -7

Then
fl(x)=16x +9x* —4x+1 — f(0)=1
f'(x) =48x" +18x —4 — f"(0)=—4
f"(x)=96x+18 — f"(0)=18
f"(x) =96 — f""(0) =96
f-ll///(X) — 0 N f////l(o) — O
We have

F(x) = F(0) + xF'(0) + X7 (0) + 3°F"(0) + gx*F"(0) +0+ 04 .

—4 1 1
f(x)=—T+1x+ —x>+ =x’18 + ﬂx496+ 04+0+...

2 6
Tadaa! the Maclaurin expansion of a polynomial is exactly itself.
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How can we obtain this?
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Expanding functions in power series (4)
Open a book and you will find

_ ( 1)n 2n
cosx = Z (2n)!
n=0
How can we obtain this? We know that
( 1 n 2n+1

d .
asmx = cos x and sinx = Z (2n+ 1)1

So let's compute it!
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Expanding functions in power series (4)
Open a book and you will find
_ ( 1)n 2n
cos X = Z 2n)]
n=0
How can we obtain this? We know that

d ( 1 n 2n+1
asinx:cosx and smx—Z (2n+1)'

d ( 1 n 2n+1
dx <Z (2n + 1)!
o0 d n 2n+1

- ;? 2n+1

So let's compute it!

i sinx =
dx -



Expanding functions in power series (4)
Open a book and you will find

cosx = (G
; (2n)!

How can we obtain this? We know that

d ( 1 n 2n+1
asinx:cosx and smx—Z (2n+1)'

So let's compute it!
d . B d > (_1)nx2n+1
ax T dx(Zo (2n + 1)!
_ ii( 1)n 2n+1
B dx (2n+1)!

_ N (D@0t 1R
N Z (2n+1)!



Expanding functions in power series (4)
Open a book and you will find

_ ( 1)n 2n
cosx = Z (2n)!
n=0
How can we obtain this? We know that
( 1 n 2n+1

d .
asmx:cosx and smx—Z (2n+1)'
So let's compute it!
d . B d o0 (_1)nx2n+1
"7 A (ZO (2n + 1)!
_ i i( 1)n 2n+1
o dx (2n+1)!
_ i (=1)"(2n + 1)x*"
N (2n+1)!

R N G L Vo
N Z (2n+1)(2n)!



Expanding functions in power series (4)
Open a book and you will find

_ ( 1)n 2n
cosx = Z (2n)!
n=0
How can we obtain this? We know that
( 1 n 2n+1

d .
asmx:cosx and smx—Z (2n+1)'
So let's compute it!
d . B d o0 (_1)nx2n+1
"7 A (ZO (2n + 1)!
_ i i( 1)n 2n+1
o dx (2n+1)!
_ i (=1)"(2n + 1)x*"
N (2n+1)!

R N G L Vo
N Z (2n+1)(2n)!



Expanding functions in power series (3)

In(1+ x)

14+ x

.. .and many more!

Il
A
|_l
3
F
,_.
:

mn
= me for

x| <1



Computing 7

We have 1
2 4 6
mzl—x +x —=x +..
and we know that
/i = atan(x)
1+x2
so that
x> x5 X
t =x-=+--=
atan(x) = x 3 + 5 7

Since atan(1) = T then



Computing 7 (2)

=

Gnuplot

3.8

R

3.4

3.2 H
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Application

Suppose we want to evaluate the definite integral

/01 sin(x*)dx

We know that

. AR S
If we now substitute t = x2 then
6 10 14
. 2y .2 X X X
sin(x”) = x y—f—ﬁ—?—i—

and then
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